6,392 research outputs found
A multibeam atom laser: coherent atom beam splitting from a single far detuned laser
We report the experimental realisation of a multibeam atom laser. A single
continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via
an optical Raman transition. The atom laser is subsequently split into up to
five atomic beams with slightly different momenta, resulting in multiple,
nearly co-propagating, coherent beams which could be of use in interferometric
experiments. The splitting process itself is a novel realization of Bragg
diffraction, driven by each of the optical Raman laser beams independently.
This presents a significantly simpler implementation of an atomic beam
splitter, one of the main elements of coherent atom optics
Effects of non-denumerable fixed points in finite dynamical systems
The motion of a spinning football brings forth the possible existence of a
whole class of finite dynamical systems where there may be non-denumerably
infinite number of fixed points. They defy the very traditional meaning of the
fixed point that a point on the fixed point in the phase space should remain
there forever, for, a fixed point can evolve as well! Under such considerations
one can argue that a free-kicked football should be non-chaotic.Comment: This paper is a replaced version to modify the not-so-true claim,
made unknowingly in the earlier version, of being first to propose the
peculiar dynamical systems as described in the paper. With respect to the
original workers, we present here our original finding
Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism
Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio
Statistical Mechanics of Steiner trees
The Minimum Weight Steiner Tree (MST) is an important combinatorial
optimization problem over networks that has applications in a wide range of
fields. Here we discuss a general technique to translate the imposed global
connectivity constrain into many local ones that can be analyzed with cavity
equation techniques. This approach leads to a new optimization algorithm for
MST and allows to analyze the statistical mechanics properties of MST on random
graphs of various types
A detector for continuous measurement of ultra-cold atoms in real time
We present the first detector capable of recording high-bandwidth real time
atom number density measurements of a Bose Einstein condensate. Based on a
two-color Mach-Zehnder interferometer, our detector has a response time that is
six orders of magnitude faster than current detectors based on CCD cameras
while still operating at the shot-noise limit. With this minimally destructive
system it may be possible to implement feedback to stabilize a Bose-Einstein
condensate or an atom laser.Comment: 3 pages, 3 figures, submitted to optics letter
Exponential Random Graph Modeling for Complex Brain Networks
Exponential random graph models (ERGMs), also known as p* models, have been
utilized extensively in the social science literature to study complex networks
and how their global structure depends on underlying structural components.
However, the literature on their use in biological networks (especially brain
networks) has remained sparse. Descriptive models based on a specific feature
of the graph (clustering coefficient, degree distribution, etc.) have dominated
connectivity research in neuroscience. Corresponding generative models have
been developed to reproduce one of these features. However, the complexity
inherent in whole-brain network data necessitates the development and use of
tools that allow the systematic exploration of several features simultaneously
and how they interact to form the global network architecture. ERGMs provide a
statistically principled approach to the assessment of how a set of interacting
local brain network features gives rise to the global structure. We illustrate
the utility of ERGMs for modeling, analyzing, and simulating complex
whole-brain networks with network data from normal subjects. We also provide a
foundation for the selection of important local features through the
implementation and assessment of three selection approaches: a traditional
p-value based backward selection approach, an information criterion approach
(AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF
approach serves as the best method given the scientific interest in being able
to capture and reproduce the structure of fitted brain networks
Effect of interchain separation on the photoinduced absorption spectra of polycarbazolyldiacetylenes
The photoinduced absorption spectra of a novel polycarbazolyldiacetylene with long aliphatic chains on the carbazolyl side groups are measured and compared with those of the unsubstituted polyDCHD. The two polymers in the blue form exhibit very similar electronic absorption spectra and Raman frequencies. This fact indicates that the conjugation length of the polydiacetylene backbone is not too affected by the long substituents. In contrast, the near steady-state photoinduced absorption spectra show that different photogeneration mechanisms are involved in the two polymers. This result can be ascribed to the role played by the interchain distance in the dynamics of the relaxation processes in polydiacetylenes
Parental bonding and identity style as correlates of self-esteem among adult adoptees and nonadoptees
Adult adoptees (n equals 100) and non-adoptees (n equals 100) were compared with regard to selfesteem, identity processing style, and parental bonding. While some differences were found with regard to self-esteem, maternal care, and maternal overprotection, these differences were
qualified by reunion status such that only reunited adoptees differed significantly from nonadoptees.
Moreover, hierarchical regression analyses indicated that parental bonding and identity processing style were more important than adoptive status per se in predicting self esteem. Implications for practitioners who work with adoptees are discussed
- …
