3,482 research outputs found

    Poisson process Fock space representation, chaos expansion and covariance inequalities

    Get PDF
    We consider a Poisson process η\eta on an arbitrary measurable space with an arbitrary sigma-finite intensity measure. We establish an explicit Fock space representation of square integrable functions of η\eta. As a consequence we identify explicitly, in terms of iterated difference operators, the integrands in the Wiener-Ito chaos expansion. We apply these results to extend well-known variance inequalities for homogeneous Poisson processes on the line to the general Poisson case. The Poincare inequality is a special case. Further applications are covariance identities for Poisson processes on (strictly) ordered spaces and Harris-FKG-inequalities for monotone functions of η\eta.Comment: 25 page

    On the capacity functional of the infinite cluster of a Boolean model

    Full text link
    Consider a Boolean model in Rd\R^d with balls of random, bounded radii with distribution F0F_0, centered at the points of a Poisson process of intensity t>0t>0. The capacity functional of the infinite cluster ZZ_\infty is given by \theta_L(t) = \BP\{ Z_\infty\cap L\ne\emptyset\}, defined for each compact LRdL\subset\R^d. We prove for any fixed LL and F0F_0 that θL(t)\theta_L(t) is infinitely differentiable in tt, except at the critical value tct_c; we give a Margulis-Russo type formula for the derivatives. More generally, allowing the distribution F0F_0 to vary and viewing θL\theta_L as a function of the measure F:=tF0F:=tF_0, we show that it is infinitely differentiable in all directions with respect to the measure FF in the supercritical region of the cone of positive measures on a bounded interval. We also prove that θL()\theta_L(\cdot) grows at least linearly at the critical value. This implies that the critical exponent known as β\beta is at most 1 (if it exists) for this model. Along the way, we extend a result of H.~Tanemura (1993), on regularity of the supercritical Boolean model in d3d \geq 3 with fixed-radius balls, to the case with bounded random radii.Comment: 23 pages, 24 references, 1 figure in Annals of Applied Probability, 201

    Moments and central limit theorems for some multivariate Poisson functionals

    Full text link
    This paper deals with Poisson processes on an arbitrary measurable space. Using a direct approach, we derive formulae for moments and cumulants of a vector of multiple Wiener-It\^o integrals with respect to the compensated Poisson process. Second, a multivariate central limit theorem is shown for a vector whose components admit a finite chaos expansion of the type of a Poisson U-statistic. The approach is based on recent results of Peccati et al.\ combining Malliavin calculus and Stein's method, and also yields Berry-Esseen type bounds. As applications, moment formulae and central limit theorems for general geometric functionals of intersection processes associated with a stationary Poisson process of kk-dimensional flats in Rd\R^d are discussed

    Double butterfly spectrum for two interacting particles in the Harper model

    Full text link
    We study the effect of interparticle interaction UU on the spectrum of the Harper model and show that it leads to a pure-point component arising from the multifractal spectrum of non interacting problem. Our numerical studies allow to understand the global structure of the spectrum. Analytical approach developed permits to understand the origin of localized states in the limit of strong interaction UU and fine spectral structure for small UU.Comment: revtex, 4 pages, 5 figure

    Bloch electron in a magnetic field and the Ising model

    Full text link
    The spectral determinant det(H-\epsilon I) of the Azbel-Hofstadter Hamiltonian H is related to Onsager's partition function of the 2D Ising model for any value of magnetic flux \Phi=2\pi P/Q through an elementary cell, where P and Q are coprime integers. The band edges of H correspond to the critical temperature of the Ising model; the spectral determinant at these (and other points defined in a certain similar way) is independent of P. A connection of the mean of Lyapunov exponents to the asymptotic (large Q) bandwidth is indicated.Comment: 4 pages, 1 figure, REVTE

    Suppressed spin dephasing for 2D and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    Get PDF
    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the fingerprint of a suppression that is enhanced due to a strong anisotropy in spin-orbit fields that can occur when the Rashba and Dresselhaus contributions are engineered to cancel each other. A surprising observation is that this mechanisms for suppressing spin dephasing is not only effective for electrons in the heterojunction quantum well, but also for electrons in a deeper bulk layer.Comment: 5 pages, 3 figure

    Almost Sure Frequency Independence of the Dimension of the Spectrum of Sturmian Hamiltonians

    Full text link
    We consider the spectrum of discrete Schr\"odinger operators with Sturmian potentials and show that for sufficiently large coupling, its Hausdorff dimension and its upper box counting dimension are the same for Lebesgue almost every value of the frequency.Comment: 12 pages, to appear in Commun. Math. Phy
    corecore