100 research outputs found
Galileo dust data from the jovian system: 2000 to 2003
The Galileo spacecraft was orbiting Jupiter between Dec 1995 and Sep 2003.
The Galileo dust detector monitored the jovian dust environment between about 2
and 370 R_J (jovian radius R_J = 71492 km). We present data from the Galileo
dust instrument for the period January 2000 to September 2003. We report on the
data of 5389 particles measured between 2000 and the end of the mission in
2003. The majority of the 21250 particles for which the full set of measured
impact parameters (impact time, impact direction, charge rise times, charge
amplitudes, etc.) was transmitted to Earth were tiny grains (about 10 nm in
radius), most of them originating from Jupiter's innermost Galilean moon Io.
Their impact rates frequently exceeded 10 min^-1. Surprisingly large impact
rates up to 100 min^-1 occurred in Aug/Sep 2000 when Galileo was at about 280
R_J from Jupiter. This peak in dust emission appears to coincide with strong
changes in the release of neutral gas from the Io torus. Strong variability in
the Io dust flux was measured on timescales of days to weeks, indicating large
variations in the dust release from Io or the Io torus or both on such short
timescales. Galileo has detected a large number of bigger micron-sized
particles mostly in the region between the Galilean moons. A surprisingly large
number of such bigger grains was measured in March 2003 within a 4-day interval
when Galileo was outside Jupiter's magnetosphere at approximately 350 R_J
jovicentric distance. Two passages of Jupiter's gossamer rings in 2002 and 2003
provided the first actual comparison of in-situ dust data from a planetary ring
with the results inferred from inverting optical images.Comment: 59 pages, 13 figures, 6 tables, submitted to Planetary and Space
Scienc
Interstellar Dust Inside and Outside the Heliosphere
In the early 1990s, after its Jupiter flyby, the Ulysses spacecraft
identified interstellar dust in the solar system. Since then the in-situ dust
detector on board Ulysses continuously monitored interstellar grains with
masses up to 10e-13 kg, penetrating deep into the solar system. While Ulysses
measured the interstellar dust stream at high ecliptic latitudes between 3 and
5 AU, interstellar impactors were also measured with the in-situ dust detectors
on board Cassini, Galileo and Helios, covering a heliocentric distance range
between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the
inner solar system is altered by the solar radiation pressure force,
gravitational focussing and interaction of charged grains with the time varying
interplanetary magnetic field. The grains act as tracers of the physical
conditions in the local interstellar cloud (LIC). Our in-situ measurements
imply the existence of a population of 'big' interstellar grains (up to 10e-13
kg) and a gas-to-dust-mass ratio in the LIC which is a factor of > 2 larger
than the one derived from astronomical observations, indicating a concentration
of interstellar dust in the very local interstellar medium. Until 2004, the
interstellar dust flow direction measured by Ulysses was close to the mean apex
of the Sun's motion through the LIC, while in 2005, the data showed a 30 deg
shift, the reason of which is presently unknown. We review the results from
spacecraft-based in-situ interstellar dust measurements in the solar system and
their implications for the physical and chemical state of the LIC.Comment: 10 pages, 2 b/w figures, 1 colour figure; submitted to Space Science
Review
Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks
TrakEM2 Software for Neural Circuit Reconstruction
A key challenge in neuroscience is the expeditious reconstruction of neuronal circuits. For model systems such as Drosophila and C. elegans, the limiting step is no longer the acquisition of imagery but the extraction of the circuit from images. For this purpose, we designed a software application, TrakEM2, that addresses the systematic reconstruction of neuronal circuits from large electron microscopical and optical image volumes. We address the challenges of image volume composition from individual, deformed images; of the reconstruction of neuronal arbors and annotation of synapses with fast manual and semi-automatic methods; and the management of large collections of both images and annotations. The output is a neural circuit of 3d arbors and synapses, encoded in NeuroML and other formats, ready for analysis
Developing open-source software for bioimage analysis: opportunities and challenges
Fast-paced innovations in imaging have resulted in single systems producing exponential amounts of data to be analyzed. Computational methods developed in computer science labs have proven to be crucial for analyzing these data in an unbiased and efficient manner, reaching a prominent role in most microscopy studies. Still, their use usually requires expertise in bioimage analysis, and their accessibility for life scientists has therefore become a bottleneck.Open-source software for bioimage analysis has developed to disseminate these computational methods to a wider audience, and to life scientists in particular. In recent years, the influence of many open-source tools has grown tremendously, helping tens of thousands of life scientists in the process. As creators of successful open-source bioimage analysis software, we here discuss the motivations that can initiate development of a new tool, the common challenges faced, and the characteristics required for achieving success
Emergent Functional Properties of Neuronal Networks with Controlled Topology
The interplay between anatomical connectivity and dynamics in neural networks plays a key role in the functional properties of the brain and in the associated connectivity changes induced by neural diseases. However, a detailed experimental investigation of this interplay at both cellular and population scales in the living brain is limited by accessibility. Alternatively, to investigate the basic operational principles with morphological, electrophysiological and computational methods, the activity emerging from large in vitro networks of primary neurons organized with imposed topologies can be studied. Here, we validated the use of a new bio-printing approach, which effectively maintains the topology of hippocampal cultures in vitro and investigated, by patch-clamp and MEA electrophysiology, the emerging functional properties of these grid-confined networks. In spite of differences in the organization of physical connectivity, our bio-patterned grid networks retained the key properties of synaptic transmission, short-term plasticity and overall network activity with respect to random networks. Interestingly, the imposed grid topology resulted in a reinforcement of functional connections along orthogonal directions, shorter connectivity links and a greatly increased spiking probability in response to focal stimulation. These results clearly demonstrate that reliable functional studies can nowadays be performed on large neuronal networks in the presence of sustained changes in the physical network connectivity
Galileo long-term dust monitoring in the Jovian magnetosphere
The Galileo spacecraft was launched in 1989, and—between 1995 and 2003—was the first spacecraft in orbit about Jupiter. The in-situ dust instrument on board was a highly sensitive impact-ionisation dust detector which measured the speed, mass and impact direction of dust particles hitting a metal target. It provided a unique 12-year record of cosmic dust in interplanetary and circumjovian space. Degradation of the instrument electronics caused by the harsh radiation environment in the inner jovian magnetosphere was recognised in various ways: the sensitivity for dust detection dropped by a factor of 7.5 between 1996 and 2003 while the noise sensitivity decreased by up to a factor of 100. Shifts in the parameters measured during dust impacts and noise events (charge amplitudes and signal rise times, etc.) required a time-dependent algorithm for noise identification. After noise removal a total of 21 224 complete data sets for dust impacts (i.e. impact charges, signal rise times, impact direction, etc.) is available from the entire Galileo mission between 1989 and 2003 (18 340 data sets from the Jupiter mission after 1996). This homogeneous data set has been used in many investigations of jovian dust published already or ongoing. Electronics degradation prevents the application of the mass and speed calibration to data obtained after 2000. Only in cases where the impact speed of grains is known by other means can grain masses be derived for later measurements. The drop of the detection sensitivity also required a time-dependent correction for fluxes of jovian dust streams, reaching a factor of 20 in 2002. We use the derived homogeneous noise-removed data set for long-term monitoring of the jovian dust streams with Galileo. The derived fluxes of dust stream particles were highly variable by about five orders of magnitude, between 3×10-3 and and exhibited strong orbit-to-orbit variability. This extensive and valuable data set is available for further detailed investigations
- …
