73 research outputs found
Interval Slopes as Numerical Abstract Domain for Floating-Point Variables
The design of embedded control systems is mainly done with model-based tools
such as Matlab/Simulink. Numerical simulation is the central technique of
development and verification of such tools. Floating-point arithmetic, that is
well-known to only provide approximated results, is omnipresent in this
activity. In order to validate the behaviors of numerical simulations using
abstract interpretation-based static analysis, we present, theoretically and
with experiments, a new partially relational abstract domain dedicated to
floating-point variables. It comes from interval expansion of non-linear
functions using slopes and it is able to mimic all the behaviors of the
floating-point arithmetic. Hence it is adapted to prove the absence of run-time
errors or to analyze the numerical precision of embedded control systems
Nuclear and chloroplast microsatellite diversity in Phaseolus vulgaris L. from Sardinia (Italy).
Studies of the level and the structure of
the genetic diversity of local varieties of Phaseolus
vulgaris are of fundamental importance, both for the
management of genetic resources and to improve our understanding of the pathways of dissemination and
the evolution of this species in Europe. We have here
characterized 73 local bean populations from Sardinia
(Italy) using seed traits and molecular markers
(phaseolins, nuSSRs and cpSSRs). American landraces
and commercial varieties were also included for
comparison. We see that: (a) the Sardinian material is
distinct from the commercial varieties considered; (b)
the variation in the seed traits is high and it mostly
occurs among populations (95%); (c) compared to the
American sample and the commercial varieties, the
Sardinian collection has a low level of diversity; (d)
the majority ([95%) of the Sardinian individuals
belong to the Andean gene pool; (e) the Sardinian
material shows a strong genetic structure, both for
cpSSRs and nuSSRs; (f) the nuSSRs and cpSSRs
concur in differentiating between gene pools, but a
lack of congruence between nuclear and chloroplast
has been observed within gene pools; and (g) there
are three putative hybrids between the Andean and
Mesoamerican gene pools. Despite the relatively low
level of diversity, which is probably due to a strong
founder effect, the Sardinian landraces are worth
being conserved and studied further because of their
distinctiveness and because hybridization within and
between the gene pools could generate variation that
will be useful for breeding
Anti-reflection coatings on 3D printed components
The use of anti-reflection coatings on 3D-printed components to reduce both Fresnel reflections and scattering is explored. Two similar photo-initiated acrylic commercial material structures, known as Standard Clear (SC: T~60% @ λ = 800 nm) and VeroClear (VC: T~90% @ λ = 800 nm), used specifically for optical components, are examined. The refractive indices for slab samples~(5 × 5 × 0.7) cm are measured at λ = 650 nm and averaged over the slab area: n(SC)~(1.49 ± 0.04) and n(VC)~(1.42 ± 0.03). Within experimental error, novel Shore D mapping is used to show hardness distribution across the surface flats, with VC slightly harder than SC, where VC = 85.9 ± 0.3 and SC = 84.4 ± 1.3, indicating uniform hardness. A TiO2/MgF2 anti-reflection twin-layer coating is deposited onto one side of an unpolished SC slab and binds well, passing standard peeling and humidity tests. Shore hardness increases to SCCOATED = 87.5 ± 1.5. It is found to reduce the measured Fresnel reflection and surface scatter by~65% without requiring major polishing, paving the way for lower-cost high-quality optics. The demonstration of successful anti-reflection coatings will benefit all 3D-printed component finishes, permitting viable film deposition more broadly
Multivariant Assertion-based Guidance in Abstract Interpretation
Approximations during program analysis are a necessary evil, as they ensure
essential properties, such as soundness and termination of the analysis, but
they also imply not always producing useful results. Automatic techniques have
been studied to prevent precision loss, typically at the expense of larger
resource consumption. In both cases (i.e., when analysis produces inaccurate
results and when resource consumption is too high), it is necessary to have
some means for users to provide information to guide analysis and thus improve
precision and/or performance. We present techniques for supporting within an
abstract interpretation framework a rich set of assertions that can deal with
multivariance/context-sensitivity, and can handle different run-time semantics
for those assertions that cannot be discharged at compile time. We show how the
proposed approach can be applied to both improving precision and accelerating
analysis. We also provide some formal results on the effects of such assertions
on the analysis results.Comment: Pre-proceedings paper presented at the 28th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2018), Frankfurt
am Main, Germany, 4-6 September 2018 (arXiv:1808.03326
Inferring Loop Invariants using Postconditions
One of the obstacles in automatic program proving is to obtain suitable loop
invariants.
The invariant of a loop is a weakened form of its postcondition (the loop's
goal, also known as its contract); the present work takes advantage of this
observation by using the postcondition as the basis for invariant inference,
using various heuristics such as "uncoupling" which prove useful in many
important algorithms.
Thanks to these heuristics, the technique is able to infer invariants for a
large variety of loop examples.
We present the theory behind the technique, its implementation (freely
available for download and currently relying on Microsoft Research's Boogie
tool), and the results obtained.Comment: Slightly revised versio
Towards the Development, Maintenance and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Chickpea
Here we present the approach used to develop the INCREASE “Intelligent Chickpea” Collections, from analysis of the information on the life history and population structure of chickpea germplasm, the availability of genomic and genetic resources, the identification of key phenotypic traits and methodologies to characterize chickpea. We present two phenotypic protocols within H2O20 Project INCREASE to characterize, develop, and maintain chickpea single-seed-descent (SSD) line collections. Such protocols and related genetic resource data from the project will be available for the legume community to apply the standardized approaches to develop Chickpea Intelligent Collections further or for multiplication/seed-increase purposes. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC
The INCREASE project: Intelligent Collections of food‐legume genetic resources for European agrofood systems
Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources
Un contributo originale alla diagnosi strumentale della sindrome ostruttiva respiratoria
- …
