1,667 research outputs found
Solitary versus Shock Wave Acceleration in Laser-Plasma Interactions
The excitation of nonlinear electrostatic waves, such as shock and solitons,
by ultraintense laser interaction with overdense plasmas and related ion
acceleration are investigated by numerical simulations. Stability of solitons
and formation of shock waves is strongly dependent on the velocity distribution
of ions. Monoenergetic components in ion spectra are produced by "pulsed"
reflection from solitary waves. Possible relevance to recent experiments on
"shock acceleration" is discussed.Comment: 4 pages, 4 figure
Economic and environmental impact assessment through system dynamics of technology-enhanced maintenance services
This work presents an economic and environmental impact assessment of maintenance services in order to evaluate how they contribute to sustainable value creation through field service delivery supported by advanced technologies. To this end, systems dynamics is used to assist the prediction of economic and environmental impacts of maintenance services supported by the use of an e-maintenance platform implementing prognosis and health management. A special concern is given to the energy use and related carbon footprint as environmental impacts
Continuous improvement planning through sustainability assessment of product-service systems
The paper presents a methodology for the integrated sustainability assessment of a product-service system lifecycle, with the purpose to support continuous improvement on the side both of the manufacturer and of the user. Its eight steps are an extension of ISO 14040 life cycle assessment and consider all three sustainability dimensions – economic, environmental and social – and a service perspective, using the service unit. A set of indicators for the three dimensions, aligned to the service unit concept, is proposed based on literature suggestions
A Femtosecond Neutron Source
The possibility to use the ultrashort ion bunches produced by circularly
polarized laser pulses to drive a source of fusion neutrons with sub-optical
cycle duration is discussed. A two-side irradiation of a thin foil deuterated
target produces two countermoving ion bunches, whose collision leads to an
ultrashort neutron burst. Using particle-in-cell simulations and analytical
modeling, it is evaluated that, for intensities of a few ,
more than neutrons per Joule may be produced within a time shorter than
one femtosecond. Another scheme based on a layered deuterium-tritium target is
outlined.Comment: 15 pages, 3 figure
Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses
The generation of electron surface oscillations in overdense plasmas
irradiated at normal incidence by an intense laser pulse is investigated.
Two-dimensional (2D) particle-in-cell simulations show a transition from a
planar, electrostatic oscillation at , with the laser
frequency, to a 2D electromagnetic oscillation at frequency and
wavevector . A new electron parametric instability, involving the
decay of a 1D electrostatic oscillation into two surface waves, is introduced
to explain the basic features of the 2D oscillations. This effect leads to the
rippling of the plasma surface within a few laser cycles, and is likely to have
a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for
publication in Phys. Rev. Let
Mean-Field Interacting Boson Random Point Fields in Weak Harmonic Traps
A model of the mean-field interacting boson gas trapped by a weak harmonic
potential is considered by the \textit{boson random point fields} methods. We
prove that in the Weak Harmonic Trap (WHT) limit there are two phases
distinguished by the boson condensation and by a different behaviour of the
local particle density. For chemical potentials less than a certain critical
value, the resulting Random Point Field (RPF) coincides with the usual boson
RPF, which corresponds to a non-interacting (ideal) boson gas. For the chemical
potentials greater than the critical value, the boson RPF describes a divergent
(local) density, which is due to \textit{localization} of the macroscopic
number of condensed particles. Notice that it is this kind of transition that
observed in experiments producing the Bose-Einstein Condensation in traps
Synthesis and biological evaluation of phosphonated dihydroisoxazole nucleosides
Phosphonated isoxazolinyl nucleosides have been prepared via 1,3-dipolar cycloaddition reaction of nitrile oxides with
corresponding vinyl or allyl nucleobases for antiviral studies. The cytotoxicity, the anti-HSV activity and the RT-inhibitory activity
of the obtained compounds were evaluated and compared with those of AZT and diethyl{(10SR,40RS)-10-[[(5-methyl-2,4-dioxo-3,4-
dihydropyrimidin-1(2H)-yl)]-30-methyl-20-oxa-30-azacyclopent-40-yl]}methylphosphonate, a saturated phosphonated dihydroisoxazole
nucleoside analogue
Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses
The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (∼ 6 x1020 Wcm-2), ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25-30 MeV/nucleon); carbon ion energies obtained employing CP pulses were signicantly higher (∼2.5 times) than for irradiations employing linearly polarized (LP) pulses. Particle-in-cell simulations indicate that Radiation Pressure Acceleration becomes the dominant mechanism for the thinnest targets and CP pulses
- …
