10,412 research outputs found

    Momentum Maps and Measure-valued Solutions (Peakons, Filaments and Sheets) for the EPDiff Equation

    Full text link
    We study the dynamics of measure-valued solutions of what we call the EPDiff equations, standing for the {\it Euler-Poincar\'e equations associated with the diffeomorphism group (of Rn\mathbb{R}^n or an nn-dimensional manifold MM)}. Our main focus will be on the case of quadratic Lagrangians; that is, on geodesic motion on the diffeomorphism group with respect to the right invariant Sobolev H1H^1 metric. The corresponding Euler-Poincar\'e (EP) equations are the EPDiff equations, which coincide with the averaged template matching equations (ATME) from computer vision and agree with the Camassa-Holm (CH) equations in one dimension. The corresponding equations for the volume preserving diffeomorphism group are the well-known LAE (Lagrangian averaged Euler) equations for incompressible fluids. We first show that the EPDiff equations are generated by a smooth vector field on the diffeomorphism group for sufficiently smooth solutions. This is analogous to known results for incompressible fluids--both the Euler equations and the LAE equations--and it shows that for sufficiently smooth solutions, the equations are well-posed for short time. In fact, numerical evidence suggests that, as time progresses, these smooth solutions break up into singular solutions which, at least in one dimension, exhibit soliton behavior. With regard to these non-smooth solutions, we study measure-valued solutions that generalize to higher dimensions the peakon solutions of the (CH) equation in one dimension. One of the main purposes of this paper is to show that many of the properties of these measure-valued solutions may be understood through the fact that their solution ansatz is a momentum map. Some additional geometry is also pointed out, for example, that this momentum map is one leg of a natural dual pair.Comment: 27 pages, 2 figures, To Alan Weinstein on the occasion of his 60th Birthda

    A Discrete Theory of Connections on Principal Bundles

    Full text link
    Connections on principal bundles play a fundamental role in expressing the equations of motion for mechanical systems with symmetry in an intrinsic fashion. A discrete theory of connections on principal bundles is constructed by introducing the discrete analogue of the Atiyah sequence, with a connection corresponding to the choice of a splitting of the short exact sequence. Equivalent representations of a discrete connection are considered, and an extension of the pair groupoid composition, that takes into account the principal bundle structure, is introduced. Computational issues, such as the order of approximation, are also addressed. Discrete connections provide an intrinsic method for introducing coordinates on the reduced space for discrete mechanics, and provide the necessary discrete geometry to introduce more general discrete symmetry reduction. In addition, discrete analogues of the Levi-Civita connection, and its curvature, are introduced by using the machinery of discrete exterior calculus, and discrete connections.Comment: 38 pages, 11 figures. Fixed labels in figure

    Discrete Mechanics and Optimal Control Applied to the Compass Gait Biped

    Get PDF
    This paper presents a methodology for generating locally optimal control policies for simple hybrid mechanical systems, and illustrates the method on the compass gait biped. Principles from discrete mechanics are utilized to generate optimal control policies as solutions of constrained nonlinear optimization problems. In the context of bipedal walking, this procedure provides a comparative measure of the suboptimality of existing control policies. Furthermore, our methodology can be used as a control design tool; to demonstrate this, we minimize the specific cost of transport of periodic orbits for the compass gait biped, both in the fully actuated and underactuated case

    Lagrangian Reduction, the Euler--Poincar\'{e} Equations, and Semidirect Products

    Get PDF
    There is a well developed and useful theory of Hamiltonian reduction for semidirect products, which applies to examples such as the heavy top, compressible fluids and MHD, which are governed by Lie-Poisson type equations. In this paper we study the Lagrangian analogue of this process and link it with the general theory of Lagrangian reduction; that is the reduction of variational principles. These reduced variational principles are interesting in their own right since they involve constraints on the allowed variations, analogous to what one finds in the theory of nonholonomic systems with the Lagrange d'Alembert principle. In addition, the abstract theorems about circulation, what we call the Kelvin-Noether theorem, are given.Comment: To appear in the AMS Arnold Volume II, LATeX2e 30 pages, no figure

    Generalized poisson brackets and nonlinear Liapunov stability application to reduces mhd

    Get PDF
    A method is presented for obtaining Liapunov functionals (LF) and proving nonlinear stability. The method uses the generalized Poisson bracket (GPB) formulation of Hamiltonian dynamics. As an illustration, certain stationary solutions of ideal reduced MHD (RMHD) are shown to be nonlinearly stable. This includes Grad-Shafranov and Alfven solutions

    Discrete Routh Reduction

    Get PDF
    This paper develops the theory of abelian Routh reduction for discrete mechanical systems and applies it to the variational integration of mechanical systems with abelian symmetry. The reduction of variational Runge-Kutta discretizations is considered, as well as the extent to which symmetry reduction and discretization commute. These reduced methods allow the direct simulation of dynamical features such as relative equilibria and relative periodic orbits that can be obscured or difficult to identify in the unreduced dynamics. The methods are demonstrated for the dynamics of an Earth orbiting satellite with a non-spherical J2J_2 correction, as well as the double spherical pendulum. The J2J_2 problem is interesting because in the unreduced picture, geometric phases inherent in the model and those due to numerical discretization can be hard to distinguish, but this issue does not appear in the reduced algorithm, where one can directly observe interesting dynamical structures in the reduced phase space (the cotangent bundle of shape space), in which the geometric phases have been removed. The main feature of the double spherical pendulum example is that it has a nontrivial magnetic term in its reduced symplectic form. Our method is still efficient as it can directly handle the essential non-canonical nature of the symplectic structure. In contrast, a traditional symplectic method for canonical systems could require repeated coordinate changes if one is evoking Darboux' theorem to transform the symplectic structure into canonical form, thereby incurring additional computational cost. Our method allows one to design reduced symplectic integrators in a natural way, despite the noncanonical nature of the symplectic structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added, fixed typo

    Is SGR 1900+14 a Magnetar?

    Get PDF
    We present RXTE observations of the soft gamma--ray repeater SGR 1900+14 taken September 4-18, 1996, nearly 2 years before the 1998 active period of the source. The pulsar period (P) of 5.1558199 +/- 0.0000029 s and period derivative (Pdot) of (6.0 +/- 1.0) X 10^-11 s/s measured during the 2-week observation are consistent with the mean Pdot of (6.126 +/- 0.006) X 10^-11 s/s over the time up to the commencement of the active period. This Pdot is less than half that of (12.77 +/- 0.01) X 10^-11 s/s observed during and after the active period. If magnetic dipole radiation were the primary cause of the pulsar spindown, the implied pulsar magnetic field would exceed the critical field of 4.4 X 10^13 G by more than an order of magnitude, and such field estimates for this and other SGRs have been offered as evidence that the SGRs are magnetars, in which the neutron star magnetic energy exceeds the rotational energy. The observed doubling of Pdot, however, would suggest that the pulsar magnetic field energy increased by more than 100% as the source entered an active phase, which seems very hard to reconcile with models in which the SGR bursts are powered by the release of magnetic energy. Because of this, we suggest that the spindown of SGR pulsars is not driven by magnetic dipole radiation, but by some other process, most likely a relativistic wind. The Pdot, therefore, does not provide a measure of the pulsar magnetic field strength, nor evidence for a magnetar.Comment: 14 pages, aasms4 latex, figures 1 & 2 changed, accepted by ApJ letter
    corecore