10,412 research outputs found
Momentum Maps and Measure-valued Solutions (Peakons, Filaments and Sheets) for the EPDiff Equation
We study the dynamics of measure-valued solutions of what we call the EPDiff
equations, standing for the {\it Euler-Poincar\'e equations associated with the
diffeomorphism group (of or an -dimensional manifold )}.
Our main focus will be on the case of quadratic Lagrangians; that is, on
geodesic motion on the diffeomorphism group with respect to the right invariant
Sobolev metric. The corresponding Euler-Poincar\'e (EP) equations are the
EPDiff equations, which coincide with the averaged template matching equations
(ATME) from computer vision and agree with the Camassa-Holm (CH) equations in
one dimension. The corresponding equations for the volume preserving
diffeomorphism group are the well-known LAE (Lagrangian averaged Euler)
equations for incompressible fluids. We first show that the EPDiff equations
are generated by a smooth vector field on the diffeomorphism group for
sufficiently smooth solutions. This is analogous to known results for
incompressible fluids--both the Euler equations and the LAE equations--and it
shows that for sufficiently smooth solutions, the equations are well-posed for
short time. In fact, numerical evidence suggests that, as time progresses,
these smooth solutions break up into singular solutions which, at least in one
dimension, exhibit soliton behavior. With regard to these non-smooth solutions,
we study measure-valued solutions that generalize to higher dimensions the
peakon solutions of the (CH) equation in one dimension. One of the main
purposes of this paper is to show that many of the properties of these
measure-valued solutions may be understood through the fact that their solution
ansatz is a momentum map. Some additional geometry is also pointed out, for
example, that this momentum map is one leg of a natural dual pair.Comment: 27 pages, 2 figures, To Alan Weinstein on the occasion of his 60th
Birthda
A Discrete Theory of Connections on Principal Bundles
Connections on principal bundles play a fundamental role in expressing the
equations of motion for mechanical systems with symmetry in an intrinsic
fashion. A discrete theory of connections on principal bundles is constructed
by introducing the discrete analogue of the Atiyah sequence, with a connection
corresponding to the choice of a splitting of the short exact sequence.
Equivalent representations of a discrete connection are considered, and an
extension of the pair groupoid composition, that takes into account the
principal bundle structure, is introduced. Computational issues, such as the
order of approximation, are also addressed. Discrete connections provide an
intrinsic method for introducing coordinates on the reduced space for discrete
mechanics, and provide the necessary discrete geometry to introduce more
general discrete symmetry reduction. In addition, discrete analogues of the
Levi-Civita connection, and its curvature, are introduced by using the
machinery of discrete exterior calculus, and discrete connections.Comment: 38 pages, 11 figures. Fixed labels in figure
Discrete Mechanics and Optimal Control Applied to the Compass Gait Biped
This paper presents a methodology for generating locally optimal control policies for simple hybrid mechanical systems, and illustrates the method on the compass gait biped. Principles from discrete mechanics are utilized to generate optimal control policies as solutions of constrained nonlinear optimization problems. In the context of bipedal walking, this procedure provides a comparative measure of the suboptimality of existing control policies. Furthermore, our methodology can be used as a control design tool; to demonstrate this, we minimize the specific cost of transport of periodic orbits for the compass gait biped, both in the fully actuated and underactuated case
Lagrangian Reduction, the Euler--Poincar\'{e} Equations, and Semidirect Products
There is a well developed and useful theory of Hamiltonian reduction for
semidirect products, which applies to examples such as the heavy top,
compressible fluids and MHD, which are governed by Lie-Poisson type equations.
In this paper we study the Lagrangian analogue of this process and link it with
the general theory of Lagrangian reduction; that is the reduction of
variational principles. These reduced variational principles are interesting in
their own right since they involve constraints on the allowed variations,
analogous to what one finds in the theory of nonholonomic systems with the
Lagrange d'Alembert principle. In addition, the abstract theorems about
circulation, what we call the Kelvin-Noether theorem, are given.Comment: To appear in the AMS Arnold Volume II, LATeX2e 30 pages, no figure
Generalized poisson brackets and nonlinear Liapunov stability application to reduces mhd
A method is presented for obtaining Liapunov
functionals (LF) and proving nonlinear stability. The method
uses the generalized Poisson bracket (GPB) formulation of
Hamiltonian dynamics. As an illustration, certain stationary
solutions of ideal reduced MHD (RMHD) are shown to be nonlinearly
stable. This includes Grad-Shafranov and Alfven
solutions
Discrete Routh Reduction
This paper develops the theory of abelian Routh reduction for discrete
mechanical systems and applies it to the variational integration of mechanical
systems with abelian symmetry. The reduction of variational Runge-Kutta
discretizations is considered, as well as the extent to which symmetry
reduction and discretization commute. These reduced methods allow the direct
simulation of dynamical features such as relative equilibria and relative
periodic orbits that can be obscured or difficult to identify in the unreduced
dynamics. The methods are demonstrated for the dynamics of an Earth orbiting
satellite with a non-spherical correction, as well as the double
spherical pendulum. The problem is interesting because in the unreduced
picture, geometric phases inherent in the model and those due to numerical
discretization can be hard to distinguish, but this issue does not appear in
the reduced algorithm, where one can directly observe interesting dynamical
structures in the reduced phase space (the cotangent bundle of shape space), in
which the geometric phases have been removed. The main feature of the double
spherical pendulum example is that it has a nontrivial magnetic term in its
reduced symplectic form. Our method is still efficient as it can directly
handle the essential non-canonical nature of the symplectic structure. In
contrast, a traditional symplectic method for canonical systems could require
repeated coordinate changes if one is evoking Darboux' theorem to transform the
symplectic structure into canonical form, thereby incurring additional
computational cost. Our method allows one to design reduced symplectic
integrators in a natural way, despite the noncanonical nature of the symplectic
structure.Comment: 24 pages, 7 figures, numerous minor improvements, references added,
fixed typo
Is SGR 1900+14 a Magnetar?
We present RXTE observations of the soft gamma--ray repeater SGR 1900+14
taken September 4-18, 1996, nearly 2 years before the 1998 active period of the
source. The pulsar period (P) of 5.1558199 +/- 0.0000029 s and period
derivative (Pdot) of (6.0 +/- 1.0) X 10^-11 s/s measured during the 2-week
observation are consistent with the mean Pdot of (6.126 +/- 0.006) X 10^-11 s/s
over the time up to the commencement of the active period. This Pdot is less
than half that of (12.77 +/- 0.01) X 10^-11 s/s observed during and after the
active period. If magnetic dipole radiation were the primary cause of the
pulsar spindown, the implied pulsar magnetic field would exceed the critical
field of 4.4 X 10^13 G by more than an order of magnitude, and such field
estimates for this and other SGRs have been offered as evidence that the SGRs
are magnetars, in which the neutron star magnetic energy exceeds the rotational
energy. The observed doubling of Pdot, however, would suggest that the pulsar
magnetic field energy increased by more than 100% as the source entered an
active phase, which seems very hard to reconcile with models in which the SGR
bursts are powered by the release of magnetic energy. Because of this, we
suggest that the spindown of SGR pulsars is not driven by magnetic dipole
radiation, but by some other process, most likely a relativistic wind. The
Pdot, therefore, does not provide a measure of the pulsar magnetic field
strength, nor evidence for a magnetar.Comment: 14 pages, aasms4 latex, figures 1 & 2 changed, accepted by ApJ
letter
- …
