875 research outputs found
Open quantum systems approach to atomtronics
We derive a quantum master equation to treat quantum systems interacting with
multiple reservoirs. The formalism is used to investigate atomic transport
across a variety of lattice configurations. We demonstrate how the behavior of
an electronic diode, a field-effect transistor, and a bipolar junction
transistor can be realized with neutral, ultracold atoms trapped in optical
lattices. An analysis of the current fluctuations is provided for the case of
the atomtronic diode. Finally, we show that it is possible to demonstrate AND
logic gate behavior in an optical lattice.Comment: 10 pages, 10 figures, 1 tabl
The Super-Strong Coupling Regime of Cavity Quantum Electrodynamics
We describe a qualitatively new regime of cavity quantum electrodynamics, the
super strong coupling regime. This regime is characterized by atom-field
coupling strengths of the order of the free spectral range of the cavity,
resulting in a significant change in the spatial mode functions of the light
field. It can be reached in practice for cold atoms trapped in an optical
dipole potential inside the resonator. We present a nonperturbative scheme that
allows us to calculate the frequencies and linewidths of the modified field
modes, thereby providing a good starting point for a quantization of the
theory.Comment: Figures rearranged and introduction rewritte
Number statistics of molecules formed from ultra-cold atoms
We calculate the number statistics of a single-mode molecular field excited
by photoassociation or via a Feshbach resonance from an atomic Bose-Einstein
condensate (BEC), a normal atomic Fermi gas and a Fermi system with pair
correlations (BCS state). We find that the molecule formation from a BEC is a
collective process that leads for short times to a coherent molecular state in
the quantum optical sense. Atoms in a normal Fermi gas, on the other hand, are
converted into molecules independently of each other and result for short times
in a molecular state analogous to that of a classical chaotic light source. The
BCS situation is intermediate between the two and goes from producing an
incoherent to a coherent molecular field with increasing gap parameter.Comment: 5 pages, 4 figure
Intensity fluctuations in steady state superradiance
Alkaline-earth like atoms with ultra-narrow optical transitions enable
superradiance in steady state. The emitted light promises to have an
unprecedented stability with a linewidth as narrow as a few millihertz. In
order to evaluate the potential usefulness of this light source as an
ultrastable oscillator in clock and precision metrology applications it is
crucial to understand the noise properties of this device. In this paper we
present a detailed analysis of the intensity fluctuations by means of
Monte-Carlo simulations and semi-classical approximations. We find that the
light exhibits bunching below threshold, is to a good approximation coherent in
the superradiant regime, and is chaotic above the second threshold.Comment: 8 pages, 5 figure
Spin squeezing in optical lattice clocks via lattice-based QND measurements
Quantum projection noise will soon limit the best achievable precision of
optical atomic clocks based on lattice-confined neutral atoms. Squeezing the
collective atomic pseudo-spin via measurement of the clock state populations
during Ramsey interrogation suppresses the projection noise. We show here that
the lattice laser field can be used to perform ideal quantum non-demolition
measurements without clock shifts or decoherence and explore the feasibility of
such an approach in theory with the lattice field confined in a ring-resonator.
Detection of the motional sideband due to the atomic vibration in the lattice
wells can yield signal sizes a hundredfold above the projection noise limit.Comment: Substantially expanded versio
Cavity QED determination of atomic number statistics in optical lattices
We study the reflection of two counter-propagating modes of the light field
in a ring resonator by ultracold atoms either in the Mott insulator state or in
the superfluid state of an optical lattice. We obtain exact numerical results
for a simple two-well model and carry out statistical calculations appropriate
for the full lattice case. We find that the dynamics of the reflected light
strongly depends on both the lattice spacing and the state of the matter-wave
field. Depending on the lattice spacing, the light field is sensitive to
various density-density correlation functions of the atoms. The light field and
the atoms become strongly entangled if the latter are in a superfluid state, in
which case the photon statistics typically exhibit complicated multimodal
structures.Comment: 10 pages revtex, 13 figure
Reconstruction of the phase of matter-wave fields using a momentum resolved cross-correlation technique
We investigate the potential of the so-called XFROG cross-correlation
technique originally developed for ultrashort laser pulses for the recovery of
the amplitude and phase of the condensate wave function of a Bose-Einstein
condensate. Key features of the XFROG method are its high resolution,
versatility and stability against noise and some sources of systematic errors.
After showing how an analogue of XFROG can be realized for Bose-Einstein
condensates, we illustrate its effectiveness in determining the amplitude and
phase of the wave function of a vortex state. The impact of a reduction of the
number of measurements and of typical sources of noise on the field
reconstruction are also analyzed.Comment: 7 pages; 9 figures; article with higher resolution figures available
from author
Coupled dynamics of atoms and radiation pressure driven interferometers
We consider the motion of the end mirror of a cavity in whose standing wave
mode pattern atoms are trapped. The atoms and the light field strongly couple
to each other because the atoms form a distributed Bragg mirror with a
reflectivity that can be fairly high. We analyze how the dipole potential in
which the atoms move is modified due to this backaction of the atoms. We show
that the position of the atoms can become bistable. These results are of a more
general nature and can be applied to any situation where atoms are trapped in
an optical lattice inside a cavity and where the backaction of the atoms on the
light field cannot be neglected. We analyze the dynamics of the coupled system
in the adiabatic limit where the light field adjusts to the position of the
atoms and the light field instantaneously and where the atoms move much faster
than the mirror. We calculate the side band spectrum of the light transmitted
through the cavity and show that these spectra can be used to detect the
coupled motion of the atoms and the mirror.Comment: 11 pages; 13 figures; two added references and other minor
correction
- …
