1,946 research outputs found

    Comment on "Anomalous Thermal Conductivity of Frustrated Heisenberg Spin Chains and Ladders"

    Get PDF
    In a recent letter [Phys. Rev. Lett. 89, 156603 (2002); cond-mat/0201300], Alvarez and Gros have numerically analyzed the Drude weight for thermal transport in spin ladders and frustrated chains of up to 14 sites and have proposed that it remains finite in the thermodynamic limit. In this comment, we argue that this conclusion cannot be sustained if the finite-size analysis is taken to larger system sizes.Comment: One page REVTeX4, 1 figure. Published version (minor changes

    Thermal conductivity of the one-dimensional Fermi-Hubbard model

    Get PDF
    We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interactions and moreover, we compute its filling dependence at infinite temperature. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultra-cold quantum gas experiments and for transport measurements with quasi-one dimensional materials

    Large magnetic thermal conductivity induced by frustration in low-dimensional quantum magnets

    Full text link
    We study the magnetic field-dependence of the thermal conductivity due to magnetic excitations in frustrated spin-1/2 Heisenberg chains. Near the saturation field, the system is described by a dilute gas of weakly-interacting fermions (free-fermion fixed point). We show that in this regime the thermal conductivity exhibits a non-monotonic behavior as a function of the ratio α=J2/J1\alpha= J_2/J_1 between second and first nearest-neighbor antiferromagnetic exchange interactions. This result is a direct consequence of the splitting of the single-particle dispersion minimum into two minima that takes place at the Lifshitz point α=1/4\alpha=1/4. Upon increasing α\alpha from zero, the inverse mass vanishes at α=1/4\alpha=1/4 and it increases monotonically from zero for α1/4\alpha \geq 1/4. By deriving an effective low-energy theory of the dilute gas of fermions, we demonstrate that the Drude weight KthK_{\rm th} of the thermal conductivity exhibits a similar dependence on α\alpha near the saturation field. Moreover, this theory predicts a transition between a two-component Tomonaga-Luttinger liquid and a vector-chiral phase at a critical value α=αc\alpha=\alpha_c that agrees very well with previous density matrix renormalization group results. We also show that the resulting curve Kth(α)K_{\rm th}(\alpha) is in excellent agreement with exact diagonalization (ED) results. Our ED results also show that Kth(α)K_{\rm th}(\alpha) has a pronounced minimum at α0.7\alpha\simeq 0.7 and it decreases for sufficiently large α\alpha at lower magnetic field values. We also demonstrate that the thermal conductivity is significantly affected by the presence of magnetothermal coupling

    Thermal transport of the XXZ chain in a magnetic field

    Full text link
    We study the heat conduction of the spin-1/2 XXZ chain in finite magnetic fields where magnetothermal effects arise. Due to the integrability of this model, all transport coefficients diverge, signaled by finite Drude weights. Using exact diagonalization and mean-field theory, we analyze the temperature and field dependence of the thermal Drude weight for various exchange anisotropies under the condition of zero magnetization-current flow. First, we find a strong magnetic field dependence of the Drude weight, including a suppression of its magnitude with increasing field strength and a non-monotonic field-dependence of the peak position. Second, for small exchange anisotropies and magnetic fields in the massless as well as in the fully polarized regime the mean-field approach is in excellent agreement with the exact diagonalization data. Third, at the field-induced quantum critical line between the para- and ferromagnetic region we propose a universal low-temperature behavior of the thermal Drude weight.Comment: 9 pages REVTeX4 including 5 figures, revised version, refs. added, typos correcte

    Coherent spin-current oscillations in transverse magnetic fields

    Full text link
    We address the coherence of the dynamics of spin-currents with components transverse to an external magnetic field for the spin-1/2 Heisenberg chain. We study current autocorrelations at finite temperatures and the real-time dynamics of currents at zero temperature. Besides a coherent Larmor oscillation, we find an additional collective oscillation at higher frequencies, emerging as a coherent many-magnon effect at low temperatures. Using numerical and analytical methods, we analyze the oscillation frequency and decay time of this coherent current-mode versus temperature and magnetic field.Comment: 4 pages, 5 figures (and supplemental material: 4 pages, 6 figures
    corecore