318 research outputs found

    Physical Conditions in the Inner Narrow-Line Region of the Seyfert 2 Galaxy NGC 1068

    Get PDF
    The physical conditions in the inner narrow line region (NLR) of the Seyfert 2 galaxy, NGC 1068, are examined using ultraviolet and optical spectra and photoionization models. The spectra are Hubble Space Telescope (HST) Harchive data obtained with the Faint Object Spectrograph (FOS). We selected spectra of four regions, taken through the 0.3" FOS aperture, covering the full FOS 1200A to 6800A waveband. Each region is approximately 20 pc in extent, and all are within 100 pc of the apparent nucleus of NGC 1068. The spectra show similar emission-line ratios from wide range of ionization states for the most abundant elements. After extensive photoionization modeling, we interpret this result as an indication that each region includes a range of gas densities, which we included in the models as separate components. Supersolar abundances were required for several elements to fit the observed emission line ratios. Dust was included in the models but apparently dust to gas fraction varies within these regions. The low ionization lines in these spectra can be best explained as arising in gas that is partially shielded from the ionizing continuum. Although the predicted line ratios from the photoionization models provide a good fit to the observed ratios, it is apparent that the model predictions of electron temperatures in the ionized gas are too low. We interpret this as an indication of additional collisional heating due to shocks and/or energetic particles associated with the radio jet that traverses the NLR of NGC 1068. The density structure within each region may also be the result of compression by the jet.Comment: 38 pages, Latex, includes 5 figures (postscript), to appear in Ap

    Evidence for a Physically Compact Narrow-Line Region in the Seyfert 1 Galaxy NGC 5548

    Get PDF
    We have combined HST/FOS and ground-based spectra of the Seyfert 1 galaxy NGC 5548 to study the narrow emission lines over the 1200 -- 10,000 angstrom region. All of the spectra were obtained when the broad emission line and continuum fluxes were at an historic low level, allowing us to accurately determine the contribution of the narrow-line region (NLR) to the emission lines. We have generated multicomponent photoionization models to investigate the relative strength of the high ionization lines compared to those in Seyfert 2 galaxies, and the weakness of the narrow Mg II 2800 line. We present evidence for a high ionization component of NLR gas that is very close to the nucleus (~1 pc). This component must be optically thin to ionizing radiation at the Lyman edge (tau = 2.5) to avoid producing [O I] and Mg II in a partially ionized zone. The very high ionization lines (N V, [Ne V], [Fe VII], [Fe X]) are stronger than the predictions of our standard model, and we show that this may be due to supersolar abundances and/or a ``blue bump'' in the extreme ultraviolet (although recent observations do not support the latter). An outer component of NLR gas (at only ~70 pc from the continuum source) is needed to produce the low ionization lines. We show that the outer component may contain dust, which further reduces the Mg II flux by depletion and by absorption of the resonance photons after multiple scatterings. We show that the majority of the emission in the NLR of NGC 5548 must arise within about ~70 pc from the nucleus. Thus, the NLR in this Seyfert 1 galaxy is very physically compact, compared to the typical NLR in Seyfert 2 galaxies.Comment: 38 pages, Latex, includes 2 figures (postscript), to appear in Ap

    A reverberation-based black hole mass for MCG-06-30-15

    Get PDF
    We present the results of a reverberation campaign targeting MGC-06-30-15. Spectrophotometric monitoring and broad-band photometric monitoring over the course of 4 months in the spring of 2012 allowed a determination of a time delay in the broad Hβ emission line of τ =5.3 ± 1.8 days in the rest frame of the AGN. Combined with the width of the variable portion of the emission line, we determine a black hole mass of MBH = (1.6 ± 0.4) x 106 M_sun. Both the Hβ time delay and the black hole mass are in good agreement with expectations from the RBLR - L and MBH - σ* relationships for other reverberation-mapped AGNs. The Hβ time delay is also in good agreement with the relationship between H and broad-band near-IR delays, in which the effective BLR size is ∼4-5 times smaller than the inner edge of the dust torus. Additionally, the reverberation-based mass is in good agreement with estimates from the X-ray power spectral density break scaling relationship, and with constraints based on stellar kinematics derived from integral field spectroscopy of the inner ∼ 0.5 kpc of the galaxy.Publisher PDFPeer reviewe

    BAT AGN Spectroscopic Survey-III. An observed link between AGN Eddington ratio and narrow emission line ratios

    Get PDF
    We investigate the observed relationship between black hole mass (MBHM_{\rm BH}), bolometric luminosity (LbolL_{\rm bol}), and Eddington ratio (λEdd{\lambda}_{\rm Edd}) with optical emission line ratios ([NII] {\lambda}6583/H{\alpha}, [SII] {\lambda}{\lambda}6716,6731/H{\alpha}, [OI] {\lambda}6300/H{\alpha}, [OIII] {\lambda}5007/H{\beta}, [NeIII] {\lambda}3869/H{\beta}, and HeII {\lambda}4686/H{\beta}) of hard X-ray-selected AGN from the BAT AGN Spectroscopic Survey (BASS). We show that the [NII] {\lambda}6583/H{\alpha} ratio exhibits a significant correlation with λEdd{\lambda}_{\rm Edd} (RPearR_{\rm Pear} = -0.44, pp-value=3×10133\times10^{-13}, {\sigma} = 0.28 dex), and the correlation is not solely driven by MBHM_{\rm BH} or LbolL_{\rm bol}. The observed correlation between [NII] {\lambda}6583/H{\alpha} ratio and MBHM_{\rm BH} is stronger than the correlation with LbolL_{\rm bol}, but both are weaker than the λEdd{\lambda}_{\rm Edd} correlation. This implies that the large-scale narrow lines of AGN host galaxies carry information about the accretion state of the AGN central engine. We propose that the [NII] {\lambda}6583/H{\alpha} is a useful indicator of Eddington ratio with 0.6 dex of rms scatter, and that it can be used to measure λEdd{\lambda}_{\rm Edd} and thus MBHM_{\rm BH} from the measured LbolL_{\rm bol}, even for high redshift obscured AGN. We briefly discuss possible physical mechanisms behind this correlation, such as the mass-metallicity relation, X-ray heating, and radiatively driven outflows.Comment: Accepted for publication in MNRAS, 9 pages, 5 figures, 1 tabl

    Radio Properties of Low Redshift Broad Line Active Galactic Nuclei

    Full text link
    The question as to whether the distribution of radio-loudness in active galactic nuclei (AGN) is actually bimodal has been discussed extensively in the literature. Futhermore, there have been claims that radio-loudness depends on black hole mass and Eddington ratio. We investigate these claims using the low redshift broad line AGN sample of Greene & Ho (2007), which consists of 8434 objects at z < 0.35 from the Sloan Digital Sky Survey Fourth Data Release (SDSS DR4). We obtained radio fluxes from the Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey for the SDSS AGN. Out of the 8434 SDSS AGN, 821 have corresponding observed radio fluxes in the FIRST survey. We calculated the radio-loudness parameter (R) for all objects above the FIRST detection limit (1 mJy), and an upper limit to R for the undetected objects. Using these data, the question of radio bimodality is investigated for different subsets of the total sample. We find no clear demarcation between the radio-loud (RL, R > 10) and radio-quiet (RQ, R < 10) objects, but instead fill in a more radio-intermediate population in a continuous fashion for all subsamples. We find that 4.7% of the AGN in the flux-limited subsample are RL based on core radio emission alone. We calculate the radio-loud fraction (RLF) as both a function of black hole mass and Eddington ratio. The RLF decreases (from 13% to 2%) as Eddington ratio increases over 2.5 order of magnitude. The RLF is nearly constant (~5%) over 4 decades in black hole mass, except for an increase at masses greater than 10^8 solar masses. We find for the FIRST detected subsample that 367 of the RL AGN have black hole masses less than 10^8 solar masses, a large enough number to indicate that RL AGN are not a product of only the most massive black holes in the local universe.Comment: 28 pages, 14 figures, accepted to A
    corecore