333 research outputs found
Extracting Atoms on Demand with Lasers
We propose a scheme that allows to coherently extract cold atoms from a
reservoir in a deterministic way. The transfer is achieved by means of
radiation pulses coupling two atomic states which are object to different
trapping conditions. A particular realization is proposed, where one state has
zero magnetic moment and is confined by a dipole trap, whereas the other state
with non-vanishing magnetic moment is confined by a steep microtrap potential.
We show that in this setup a predetermined number of atoms can be transferred
from a reservoir, a Bose-Einstein condensate, into the collective quantum state
of the steep trap with high efficiency in the parameter regime of present
experiments.Comment: 11 pages, 8 figure
Measurement induced quantum-classical transition
A model of an electrical point contact coupled to a mechanical system
(oscillator) is studied to simulate the dephasing effect of measurement on a
quantum system. The problem is solved at zero temperature under conditions of
strong non-equilibrium in the measurement apparatus. For linear coupling
between the oscillator and tunneling electrons, it is found that the oscillator
dynamics becomes damped, with the effective temperature determined by the
voltage drop across the junction. It is demonstrated that both the quantum
heating and the quantum damping of the oscillator manifest themselves in the
current-voltage characteristic of the point contact.Comment: in RevTex, 1 figure, corrected notatio
Measurement of the Proton's Neutral Weak Magnetic Form Factor
We report the first measurement of the parity-violating asymmetry in elastic
electron scattering from the proton. The asymmetry depends on the neutral weak
magnetic form factor of the proton which contains new information on the
contribution of strange quark-antiquark pairs to the magnetic moment of the
proton. We obtain the value n.m. at
(GeV/c).Comment: 4 pages TEX, text available at
http://www.krl.caltech.edu/preprints/OAP.htm
New mechanism for the production of the extremely fast light particles in heavy-ion collisions in the Fermi energy domain
Employing a four-body classical model, various mechanisms responsible for the
production of fast light particles in heavy ion collisions at low and
intermediate energies have been studied. It has been shown that at energies
lower than 50 A MeV, light particles of velocities of more than two times
higher than the projectile velocities are produced due to the acceleration of
the target light-particles by the mean field of the incident nucleus. It has
also been shown that precision experimental reaction research in normal and
inverse kinematics is likely to provide vital information about which mechanism
is dominant in the production of fast light particles.Comment: 4 pages, 3 figures, LaTeX, to be published in Proceedings of VII
International School-Seminar on Heavy Ion Physics, May 27 - June 1, 2002,
Dubna, Russi
The meeting problem in the quantum random walk
We study the motion of two non-interacting quantum particles performing a
random walk on a line and analyze the probability that the two particles are
detected at a particular position after a certain number of steps (meeting
problem). The results are compared to the corresponding classical problem and
differences are pointed out. Analytic formulas for the meeting probability and
its asymptotic behavior are derived. The decay of the meeting probability for
distinguishable particles is faster then in the classical case, but not
quadratically faster. Entangled initial states and the bosonic or fermionic
nature of the walkers are considered
Comparative Analysis of the Mechanisms of Fast Light Particle Formation in Nucleus-Nucleus Collisions at Low and Intermediate Energies
The dynamics and the mechanisms of preequilibrium-light-particle formation in
nucleus-nucleus collisions at low and intermediate energies are studied on the
basis of a classical four-body model. The angular and energy distributions of
light particles from such processes are calculated. It is found that, at
energies below 50 MeV per nucleon, the hardest section of the energy spectrum
is formed owing to the acceleration of light particles from the target by the
mean field of the projectile nucleus. Good agreement with available
experimental data is obtained.Comment: 23 pages, 10 figures, LaTeX, published in Physics of Atomic Nuclei
v.65, No. 8, 2002, pp. 1459 - 1473 translated from Yadernaya Fizika v. 65,
No. 8, 2002, pp. 1494 - 150
A Study of the Quasi-elastic (e,e'p) Reaction on C, Fe and Au
We report the results from a systematic study of the quasi-elastic (e,e'p)
reaction on C, Fe and Au performed at Jefferson Lab. We
have measured nuclear transparency and extracted spectral functions (corrected
for radiation) over a Q range of 0.64 - 3.25 (GeV/c) for all three
nuclei. In addition we have extracted separated longitudinal and transverse
spectral functions at Q of 0.64 and 1.8 (GeV/c) for these three nuclei
(except for Au at the higher Q). The spectral functions are
compared to a number of theoretical calculations. The measured spectral
functions differ in detail but not in overall shape from most of the
theoretical models. In all three targets the measured spectral functions show
considerable excess transverse strength at Q = 0.64 (GeV/c), which is
much reduced at 1.8 (GeV/c).Comment: For JLab E91013 Collaboration, 19 pages, 20 figures, 3 table
Phenomenology of the Deuteron Electromagnetic Form Factors
A rigorous extraction of the deuteron charge form factors from tensor
polarization data in elastic electron-deuteron scattering, at given values of
the 4-momentum transfer, is presented. Then the world data for elastic
electron-deuteron scattering is used to parameterize, in three different ways,
the three electromagnetic form factors of the deuteron in the 4-momentum
transfer range 0-7 fm^-1. This procedure is made possible with the advent of
recent polarization measurements. The parameterizations allow a
phenomenological characterization of the deuteron electromagnetic structure.
They can be used to remove ambiguities in the form factors extraction from
future polarization data.Comment: 18 pages (LaTeX), 2 figures Feb. 25: minor changes of content and in
Table
- …
