1,144 research outputs found
Transitions of tethered polymer chains: A simulation study with the bond fluctuation lattice model
A polymer chain tethered to a surface may be compact or extended, adsorbed or
desorbed, depending on interactions with the surface and the surrounding
solvent. This leads to a rich phase diagram with a variety of transitions. To
investigate these transitions we have performed Monte Carlo simulations of a
bond-fluctuation model with Wang-Landau and umbrella sampling algorithms in a
two-dimensional state space. The simulations' density of states results have
been evaluated for interaction parameters spanning the range from good to poor
solvent conditions and from repulsive to strongly attractive surfaces. In this
work, we describe the simulation method and present results for the overall
phase behavior and for some of the transitions. For adsorption in good solvent,
we compare with Metropolis Monte Carlo data for the same model and find good
agreement between the results. For the collapse transition, which occurs when
the solvent quality changes from good to poor, we consider two situations
corresponding to three-dimensional (hard surface) and two-dimensional (very
attractive surface) chain conformations, respectively. For the hard surface, we
compare tethered chains with free chains and find very similar behavior for
both types of chains. For the very attractive surface, we find the
two-dimensional chain collapse to be a two-step transition with the same
sequence of transitions that is observed for three-dimensional chains: a
coil-globule transition that changes the overall chain size is followed by a
local rearrangement of chain segments.Comment: 17 pages, 12 figures, to appear in J. Chem. Phy
Absorption/Expulsion of Oligomers and Linear Macromolecules in a Polymer Brush
The absorption of free linear chains in a polymer brush was studied with
respect to chain size and compatibility with the brush by means of
Monte Carlo (MC) simulations and Density Functional Theory (DFT) /
Self-Consistent Field Theory (SCFT) at both moderate, , and
high, , grafting densities using a bead-spring model.
Different concentrations of the free chains are
examined. Contrary to the case of when all species are almost
completely ejected by the polymer brush irrespective of their length , for
we find that the degree of absorption (absorbed amount)
undergoes a sharp crossover from weak to strong () absorption,
discriminating between oligomers, , and longer chains. For a
moderately dense brush, , the longer species, ,
populate predominantly the deep inner part of the brush whereas in a dense
brush they penetrate into the "fluffy" tail of the dense
brush only. Gyration radius and end-to-end distance of absorbed
chains thereby scale with length as free polymers in the bulk. Using both
MC and DFT/SCFT methods for brushes of different chain length , we demonstrate the existence of unique {\em critical} value of
compatibility . For the energy of free
chains attains the {\em same} value, irrespective of length whereas the
entropy of free chain displays a pronounced minimum. At all density
profiles of absorbing chains with different intersect at the same distance
from the grafting plane. The penetration/expulsion kinetics of free chains into
the polymer brush after an instantaneous change in their compatibility
displays a rather rich behavior. We find three distinct regimes of penetration
kinetics of free chains regarding the length : I (), II (), and III (), in which the time of absorption grows with
at a different rate. During the initial stages of penetration into the
brush one observes a power-law increase of with power
whereby penetration of the free chains into the
brush gets {\em slower} as their concentration rises
Adsorption transition of a self-avoiding polymer chain onto a rigid rod
The subject of this work is the adsorption transition of a long flexible
self-avoiding polymer chain onto a rigid thin rod. The rod is represented by a
cylinder of radius R with a short-ranged attractive surface potential for the
chain monomers. General scaling results are obtained by using renormalization
group arguments in conjunction with available results for quantum field
theories with curved boundaries [McAvity and Osborn 1993 Nucl. Phys. B 394,
728]. Relevant critical exponents are identified and estimated using geometric
arguments.Comment: 19 pages, 4 figures. To appear in: J. Phys.: Condens. Matter, special
issue dedicated to Lothar Schaefer on the occasion of his 60th birthda
Structure of Colloid-Polymer Suspensions
We discuss structural correlations in mixtures of free polymer and colloidal
particles based on a microscopic, 2-component liquid state integral equation
theory. Whereas in the case of polymers much smaller than the spherical
particles the relevant polymer degree of freedom is the center of mass, for
polymers larger than the (nano-) particles conformational rearrangements need
to be considered. They have the important consequence that the polymer
depletion layer exhibits two widely different length scales, one of the order
of the particle radius, the other of the order of the polymer radius or the
polymer density screening length in dilute or semidilute concentrations,
respectively. Their consequences on phase stability and structural correlations
are discussed extensively.Comment: 37 pages, 17 figures; topical feature articl
Surface Grafting of Poly(L-glutamates). 3. Block Copolymerization
This paper describes for the first time the synthesis of surface-grafted AB-block copolypeptides, consisting of poly(γ-benzyl L-glutamate) (PBLG) as the A-block and poly(γ-methyl L-glutamate) (PMLG) as the B-block. Immobilized primary amine groups of (γ-aminopropyl)triethoxysilane (APS) on silicon wafers initiated the ring-opening polymerization of N-carboxyanhydrides of glutamic acid esters (NCAs). After removal of the BLG-NCA monomer solution after a certain reaction time, the amine end groups of the formed PBLG blocks acted as initiators for the second monomers. This method provides the possibility of making layered structures of surface-grafted block copolymers with tuned properties. Ellipsometry and small-angle X-ray reflection (SAXR) measurements revealed the thickness of the polypeptide layers ranging from 45-100 Å of the first block to 140-270 Å for the total block copolypeptides. The chemical composition of the blocks was determined by X-ray photoelectron spectroscopy (XPS). In addition, Fourier transform infrared transmission spectroscopy (FT-IR) revealed that the polypeptide main chains of both blocks consisted of pure R-helices. The average orientation of the helices ranging from 22-42° with respect to the substrate within the first block to 31-35° in the second block could be derived with FT-IR as well.
From Capillary Condensation to Interface Localization Transitions in Colloid Polymer Mixtures Confined in Thin Film Geometry
Monte Carlo simulations of the Asakura-Oosawa (AO) model for colloid-polymer
mixtures confined between two parallel repulsive structureless walls are
presented and analyzed in the light of current theories on capillary
condensation and interface localization transitions. Choosing a polymer to
colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to
D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used;
phase transitions are analyzed via finite size scaling, as in previous work on
bulk systems and under confinement between identical types of walls. Unlike the
latter work, inequivalent walls are used here: while the left wall has a
hard-core repulsion for both polymers and colloids, at the right wall an
additional square-well repulsion of variable strength acting only on the
colloids is present. We study how the phase separation into colloid-rich and
colloid-poor phases occurring already in the bulk is modified by such a
confinement. When the asymmetry of the wall-colloid interaction increases, the
character of the transition smoothly changes from capillary condensation-type
to interface localization-type. The critical behavior of these transitions is
discussed, as well as the colloid and polymer density profiles across the film
in the various phases, and the correlation of interfacial fluctuations in the
direction parallel to the confining walls. The experimental observability of
these phenomena also is briefly discussed.Comment: 36 pages, 15 figure
Gene Dosage Effects at the Imprinted Gnas Cluster
Genomic imprinting results in parent-of-origin-dependent monoallelic gene expression. Early work showed that distal mouse chromosome 2 is imprinted, as maternal and paternal duplications of the region (with corresponding paternal and maternal deficiencies) give rise to different anomalous phenotypes with early postnatal lethalities. Newborns with maternal duplication (MatDp(dist2)) are long, thin and hypoactive whereas those with paternal duplication (PatDp(dist2)) are chunky, oedematous, and hyperactive. Here we focus on PatDp(dist2). Loss of expression of the maternally expressed Gnas transcript at the Gnas cluster has been thought to account for the PatDp(dist2) phenotype. But PatDp(dist2) also have two expressed doses of the paternally expressed Gnasxl transcript. Through the use of targeted mutations, we have generated PatDp(dist2) mice predicted to have 1 or 2 expressed doses of Gnasxl, and 0, 1 or 2 expressed doses of Gnas. We confirm that oedema is due to lack of expression of imprinted Gnas alone. We show that it is the combination of a double dose of Gnasxl, with no dose of imprinted Gnas, that gives rise to the characteristic hyperactive, chunky, oedematous, lethal PatDp(dist2) phenotype, which is also hypoglycaemic. However PatDp(dist2) mice in which the dosage of the Gnasxl and Gnas is balanced (either 2∶2 or 1∶1) are neither dysmorphic nor hyperactive, have normal glucose levels, and are fully viable. But PatDp(dist2) with biallelic expression of both Gnasxl and Gnas show a marked postnatal growth retardation. Our results show that most of the PatDp(dist2) phenotype is due to overexpression of Gnasxl combined with loss of expression of Gnas, and suggest that Gnasxl and Gnas may act antagonistically in a number of tissues and to cause a wide range of phenotypic effects. It can be concluded that monoallelic expression of both Gnasxl and Gnas is a requirement for normal postnatal growth and development
Self-Consistent Field study of Polyelectrolyte Brushes
We formulate a self-consistent field theory for polyelectrolyte brushes in
the presence of counterions. We numerically solve the self-consistent field
equations and study the monomer density profile, the distribution of
counterions, and the total charge distribution. We study the scaling relations
for the brush height and compare them to the prediction of other theories. We
find a weak dependence of the brush height on the grafting density.We fit the
counterion distribution outside the brush by the Gouy-Chapman solution for a
virtual charged wall. We calculate the amount of counterions outside the brush
and find that it saturates as the charge of the polyelectrolytes increases
- …
