32,164 research outputs found

    Complete intersection singularities of splice type as universal abelian covers

    Get PDF
    It has long been known that every quasi-homogeneous normal complex surface singularity with Q-homology sphere link has universal abelian cover a Brieskorn complete intersection singularity. We describe a broad generalization: First, one has a class of complete intersection normal complex surface singularities called "splice type singularities", which generalize Brieskorn complete intersections. Second, these arise as universal abelian covers of a class of normal surface singularities with Q-homology sphere links, called "splice-quotient singularities". According to the Main Theorem, splice-quotients realize a large portion of the possible topologies of singularities with Q-homology sphere links. As quotients of complete intersections, they are necessarily Q-Gorenstein, and many Q-Gorenstein singularities with Q-homology sphere links are of this type. We conjecture that rational singularities and minimally elliptic singularities with Q-homology sphere links are splice-quotients. A recent preprint of T Okuma presents confirmation of this conjecture.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol9/paper17.abs.htm

    Temperature and heat flux measurements: Challenges for high temperature aerospace application

    Get PDF
    The measurement of high temperatures and the influence of heat transfer data is not strictly a problem of either the high temperatures involved or the level of the heating rates to be measured at those high temperatures. It is a problem of duration during which measurements are made and the nature of the materials in which the measurements are made. Thermal measurement techniques for each application must respect and work with the unique features of that application. Six challenges in the development of measurement technology are discussed: (1) to capture the character and localized peak values within highly nonuniform heating regions; (2) to manage large volumes of thermal instrumentation in order to efficiently derive critical information; (3) to accommodate thermal sensors into practical flight structures; (4) to broaden the capabilities of thermal survey techniques to replace discrete gages in flight and on the ground; (5) to provide supporting instrumentation conduits which connect the measurement points to the thermally controlled data acquisition system; and (6) to develop a class of 'vehicle tending' thermal sensors to assure the integrity of flight vehicles in an efficient manner

    Immersed and virtually embedded pi_1-injective surfaces in graph manifolds

    Full text link
    We show that many 3-manifold groups have no nonabelian surface subgroups. For example, any link of an isolated complex surface singularity has this property. In fact, we determine the exact class of closed graph-manifolds which have no immersed pi_1-injective surface of negative Euler characteristic. We also determine the class of closed graph manifolds which have no finite cover containing an embedded such surface. This is a larger class. Thus, manifolds M^3 exist which have immersed pi_1-injective surfaces of negative Euler characteristic, but no such surface is virtually embedded (finitely covered by an embedded surface in some finite cover of M^3).Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol1/agt-1-20.abs.htm

    Zeno effect and ergodicity in finite-time quantum measurements

    Full text link
    We demonstrate that an attempt to measure a non-local in time quantity, such as the time average \la A\ra_T of a dynamical variable AA, by separating Feynman paths into ever narrower exclusive classes traps the system in eigensubspaces of the corresponding operator \a. Conversely, in a long measurement of \la A\ra_T to a finite accuracy, the system explores its Hilbert space and is driven to a universal steady state in which von Neumann ensemble average of \a coincides with \la A\ra_T. Both effects are conveniently analysed in terms of singularities and critical points of the corresponding amplitude distribution and the Zeno-like behaviour is shown to be a consequence of conservation of probability

    The Orevkov invariant of an affine plane curve

    Full text link
    We show that although the fundamental group of the complement of an algebraic affine plane curve is not easy to compute, it possesses a more accessible quotient, which we call the Orevkov invariant.Comment: 20 page

    Lipschitz geometry of complex surfaces: analytic invariants and equisingularity

    Full text link
    We prove that the outer Lipschitz geometry of a germ (X,0)(X,0) of a normal complex surface singularity determines a large amount of its analytic structure. In particular, it follows that any analytic family of normal surface singularities with constant Lipschitz geometry is Zariski equisingular. We also prove a strong converse for families of normal complex hypersurface singularities in C3\mathbb C^3: Zariski equisingularity implies Lipschitz triviality. So for such a family Lipschitz triviality, constant Lipschitz geometry and Zariski equisingularity are equivalent to each other.Comment: Added a new section 10 to correct a minor gap and simplify some argument
    corecore