15,668 research outputs found

    OMEGA navigation system status and future plans

    Get PDF
    OMEGA is described as a very low frequency (VLF) radio navigational system operating in the internationally allocated navigation band in the electromagentic spectrum between 10 and 14 kilohertz. Full system implementation with worldwide coverage from eight transmitting stations is planned for the latter 1970's. Experimental stations have operated since 1966 in support of system evaluation and test. These stations provided coverage over most of the North Atlantic, North American Continent, and eastern portions of the North Pacific. This coverage provided the fundamental basis for further development of the system and has been essential to the demonstrated feasibility of the one to two nautical mile root-mean-square system accuracy. OMEGA is available to users in all nations, both on ships and in aircraft

    A point mass in an isotropic universe: III. The region R2mR\leq 2m

    Full text link
    McVittie's solution of Einstein's field equations, representing a point mass embedded into an isotropic universe, possesses a scalar curvature singularity at proper radius R=2mR=2m. The singularity is space-like and precedes, in the expanding case, all other events in the space-time. It is shown here that this singularity is gravitationally weak, and the possible structure of the region R2mR\leq 2m is investigated. A characterization of this solution which does not involve asymptotics is given.Comment: Revtex, 11pp. To appear in Class.Quant.Grav. Paper II appeared as Class. Quant. Grav. 16 (1999) 122

    Human immunodeficiency virus treatment-induced adipose tissue pathology and lipoatrophy: Prevalence and metabolic consequences

    Get PDF
    Lipoatrophy and metabolic complications of treatment of human immunodeficiency virus (HIV) infection may share common associations with adipose tissue pathology and inflammation. To investigate these relationships, we undertook a large-scale study of adipose tissue, body composition, and metabolic outcomes among HIV-infected adult men at a tertiary hospital HIV cohort during the period 2001-2007. Methods. Assessments included adipose biopsies (np211) for investigation of adipocyte mitochondrial DNA content, adipocytokine expression, and adipose macrophage content; and whole-body dual-energy X-ray absorptiometry (DEXA) scans (np225) for objective body composition changes; 138 individuals contributed both biopsy and DEXA data. Results. Compared with 78 treatment-naive control subjects, 98 zidovudine recipients (48%) and 49 stavudine recipients (67%) had leg fat measures <10% threshold value. Adipose samples associated with current stavudine or zidovudine (np99) revealed significant adipocyte mitochondrial DNA depletion, adipose tissue macrophage infiltration, and elevated proinflammatory cytokine levels, compared with samples from control subjects and nonthymidine nucleoside reverse-transcriptase inhibitor (NRTI) recipients (all P<.05). Improvements in adipose pathology after NRTI switching (np21 longitudinal samples) correlated with increased preswitch adipose inflammation and less severe fat loss (both P<.05). Elevated ratios of total to high-density lipoprotein cholesterol levels and Homeostatic Metabolic Assessment scores correlated independently with lipoatrophy severity (P<.05) and increased body mass index (P<.05) in thymidine NRTI-experienced individuals. No effect of demographic or HIV-related variables, or HIV protease inhibitor therapy exposure was detected. Conclusions. Adipose tissue pathology and lipoatrophic fat loss are highly prevalent among recipients of stavudine- or zidovudine-based HIV treatment and are associated with adverse metabolic outcomes. Restoring adipose tissue health appears to be an important issue in the long-term treatment of this patient population

    Lagrangian Data-Driven Reduced Order Modeling of Finite Time Lyapunov Exponents

    Full text link
    There are two main strategies for improving the projection-based reduced order model (ROM) accuracy: (i) improving the ROM, i.e., adding new terms to the standard ROM; and (ii) improving the ROM basis, i.e., constructing ROM bases that yield more accurate ROMs. In this paper, we use the latter. We propose new Lagrangian inner products that we use together with Eulerian and Lagrangian data to construct new Lagrangian ROMs. We show that the new Lagrangian ROMs are orders of magnitude more accurate than the standard Eulerian ROMs, i.e., ROMs that use standard Eulerian inner product and data to construct the ROM basis. Specifically, for the quasi-geostrophic equations, we show that the new Lagrangian ROMs are more accurate than the standard Eulerian ROMs in approximating not only Lagrangian fields (e.g., the finite time Lyapunov exponent (FTLE)), but also Eulerian fields (e.g., the streamfunction). We emphasize that the new Lagrangian ROMs do not employ any closure modeling to model the effect of discarded modes (which is standard procedure for low-dimensional ROMs of complex nonlinear systems). Thus, the dramatic increase in the new Lagrangian ROMs' accuracy is entirely due to the novel Lagrangian inner products used to build the Lagrangian ROM basis

    Compression of Martian atmosphere for production of oxygen

    Get PDF
    The compression of CO2 from the Martian atmosphere for production of O2 via an electrochemical cell is addressed. Design specifications call for an oxygen production rate of 10 kg per day and for compression of 50 times that mass of CO2. Those specifications require a compression rate of over 770 cfm at standard Martian temperature and pressure (SMTP). Much of the CO2 being compressed represents waste, unless it can be recycled. Recycling can reduce the volume of gas that must be compressed to 40 cfm at SMTP. That volume reduction represents significant mass savings in the compressor, heating equipment, filters, and energy source. Successful recycle of the gas requires separation of CO (produced in the electrochemical cell) from CO2, N2, and Ar found in the Martian atmosphere. That aspect was the focus of this work

    Expansion-induced contribution to the precession of binary orbits

    Get PDF
    We point out the existence of new effects of global spacetime expansion on local binary systems. In addition to a possible change of orbital size, there is a contribution to the precession of elliptic orbits, to be added to the well-known general relativistic effect in static spacetimes, and the eccentricity can change. Our model calculations are done using geodesics in a McVittie metric, representing a localized system in an asymptotically Robertson-Walker spacetime; we give a few numerical estimates for that case, and indicate ways in which the model should be improved.Comment: revtex, 7 pages, no figures; revised for publication in Classical and Quantum Gravity, with minor changes in response to referees' comment

    Odd-parity perturbations of self-similar Vaidya spacetime

    Get PDF
    We carry out an analytic study of odd-parity perturbations of the self-similar Vaidya space-times that admit a naked singularity. It is found that an initially finite perturbation remains finite at the Cauchy horizon. This holds not only for the gauge invariant metric and matter perturbation, but also for all the gauge invariant perturbed Weyl curvature scalars, including the gravitational radiation scalars. In each case, `finiteness' refers to Sobolev norms of scalar quantities on naturally occurring spacelike hypersurfaces, as well as pointwise values of these quantities.Comment: 28 page
    corecore