2,921 research outputs found
Popular Ensemble Methods: An Empirical Study
An ensemble consists of a set of individually trained classifiers (such as
neural networks or decision trees) whose predictions are combined when
classifying novel instances. Previous research has shown that an ensemble is
often more accurate than any of the single classifiers in the ensemble. Bagging
(Breiman, 1996c) and Boosting (Freund and Shapire, 1996; Shapire, 1990) are two
relatively new but popular methods for producing ensembles. In this paper we
evaluate these methods on 23 data sets using both neural networks and decision
trees as our classification algorithm. Our results clearly indicate a number of
conclusions. First, while Bagging is almost always more accurate than a single
classifier, it is sometimes much less accurate than Boosting. On the other
hand, Boosting can create ensembles that are less accurate than a single
classifier -- especially when using neural networks. Analysis indicates that
the performance of the Boosting methods is dependent on the characteristics of
the data set being examined. In fact, further results show that Boosting
ensembles may overfit noisy data sets, thus decreasing its performance.
Finally, consistent with previous studies, our work suggests that most of the
gain in an ensemble's performance comes in the first few classifiers combined;
however, relatively large gains can be seen up to 25 classifiers when Boosting
decision trees
Interpretation at the controller's edge: designing graphical user interfaces for the digital publication of the excavations at Gabii (Italy)
This paper discusses the authors’ approach to designing an interface for the Gabii Project’s digital volumes that attempts to fuse elements of traditional synthetic publications and site reports with rich digital datasets. Archaeology, and classical archaeology in particular, has long engaged with questions of the formation and lived experience of towns and cities. Such studies might draw on evidence of local topography, the arrangement of the built environment, and the placement of architectural details, monuments and inscriptions (e.g. Johnson and Millett 2012). Fundamental to the continued development of these studies is the growing body of evidence emerging from new excavations. Digital techniques for recording evidence “on the ground,” notably SFM (structure from motion aka close range photogrammetry) for the creation of detailed 3D models and for scene-level modeling in 3D have advanced rapidly in recent years. These parallel developments have opened the door for approaches to the study of the creation and experience of urban space driven by a combination of scene-level reconstruction models (van Roode et al. 2012, Paliou et al. 2011, Paliou 2013) explicitly combined with detailed SFM or scanning based 3D models representing stratigraphic evidence. It is essential to understand the subtle but crucial impact of the design of the user interface on the interpretation of these models. In this paper we focus on the impact of design choices for the user interface, and make connections between design choices and the broader discourse in archaeological theory surrounding the practice of the creation and consumption of archaeological knowledge. As a case in point we take the prototype interface being developed within the Gabii Project for the publication of the Tincu House. In discussing our own evolving practices in engagement with the archaeological record created at Gabii, we highlight some of the challenges of undertaking theoretically-situated user interface design, and their implications for the publication and study of archaeological materials
Connectionist Theory Refinement: Genetically Searching the Space of Network Topologies
An algorithm that learns from a set of examples should ideally be able to
exploit the available resources of (a) abundant computing power and (b)
domain-specific knowledge to improve its ability to generalize. Connectionist
theory-refinement systems, which use background knowledge to select a neural
network's topology and initial weights, have proven to be effective at
exploiting domain-specific knowledge; however, most do not exploit available
computing power. This weakness occurs because they lack the ability to refine
the topology of the neural networks they produce, thereby limiting
generalization, especially when given impoverished domain theories. We present
the REGENT algorithm which uses (a) domain-specific knowledge to help create an
initial population of knowledge-based neural networks and (b) genetic operators
of crossover and mutation (specifically designed for knowledge-based networks)
to continually search for better network topologies. Experiments on three
real-world domains indicate that our new algorithm is able to significantly
increase generalization compared to a standard connectionist theory-refinement
system, as well as our previous algorithm for growing knowledge-based networks.Comment: See http://www.jair.org/ for any accompanying file
Nanofriction mechanisms derived from the dependence of friction on load and sliding velocity from air to UHV on hydrophilic silicon
This paper examines friction as a function of the sliding velocity and
applied normal load from air to UHV in a scanning force microscope (SFM)
experiment in which a sharp silicon tip slides against a flat Si(100) sample.
Under ambient conditions, both surfaces are covered by a native oxide, which is
hydrophilic. During pump-down in the vacuum chamber housing the SFM, the
behavior of friction as a function of the applied normal load and the sliding
velocity undergoes a change. By analyzing these changes it is possible to
identify three distinct friction regimes with corresponding contact properties:
(a) friction dominated by the additional normal forces induced by capillarity
due to the presence of thick water films, (b) higher drag force from ordering
effects present in thin water layers and (c) low friction due to direct
solid-solid contact for the sample with the counterbody. Depending on
environmental conditions and the applied normal load, all three mechanisms may
be present at one time. Their individual contributions can be identified by
investigating the dependence of friction on the applied normal load as well as
on the sliding velocity in different pressure regimes, thus providing
information about nanoscale friction mechanisms
Limb imaging of the Venus O2 visible nightglow with the Venus Monitoring Camera
We investigated the Venus O2 visible nightglow with imagery from the Venus
Monitoring Camera on Venus Express. Drawing from data collected between April
2007 and January 2011, we study the global distribution of this emission,
discovered in the late 70s by the Venera 9 and 10 missions. The inferred
limb-viewing intensities are on the order of 150 kiloRayleighs at the lower
latitudes and seem to drop somewhat towards the poles. The emission is
generally stable, although there are episodes when the intensities rise up to
500 kR. We compare a set of Venus Monitoring Camera observations with
coincident measurements of the O2 nightglow at 1.27 {\mu}m made with the
Visible and Infrared Thermal Imaging Spectrometer, also on Venus Express. From
the evidence gathered in this and past works, we suggest a direct correlation
between the instantaneous emissions from the two O2 nightglow systems. Possible
implications regarding the uncertain origin of the atomic oxygen green line at
557.7 nm are noted.Comment: 7 pages, 3 figure
Signatures of Interchange Reconnection: STEREO, ACE and Hinode Observations Combined
Combining STEREO, ACE and Hinode observations has presented an opportunity to
follow a filament eruption and coronal mass ejection (CME) on the 17th of
October 2007 from an active region (AR) inside a coronal hole (CH) into the
heliosphere. This particular combination of `open' and closed magnetic
topologies provides an ideal scenario for interchange reconnection to take
place. With Hinode and STEREO data we were able to identify the emergence time
and type of structure seen in the in-situ data four days later. On the 21st,
ACE observed in-situ the passage of an ICME with `open' magnetic topology. The
magnetic field configuration of the source, a mature AR located inside an
equatorial CH, has important implications for the solar and interplanetary
signatures of the eruption. We interpret the formation of an `anemone'
structure of the erupting AR and the passage in-situ of the ICME being
disconnected at one leg, as manifested by uni-directional suprathermal electron
flux in the ICME, to be a direct result of interchange reconnection between
closed loops of the CME originating from the AR and `open' field lines of the
surrounding CH.Comment: 13 pages, 13 figures, accepted Annales Geophysica
Using airborne LiDAR Survey to explore historic-era archaeological landscapes of Montserrat in the eastern Caribbean
This article describes what appears to be the first archaeological application of airborne LiDAR survey to historic-era landscapes in the Caribbean archipelago, on the island of Montserrat. LiDAR is proving invaluable in extending the reach of traditional pedestrian survey into less favorable areas, such as those covered by dense neotropical forest and by ashfall from the past two decades of active eruptions by the Soufrière Hills volcano, and to sites in localities that are inaccessible on account of volcanic dangers. Emphasis is placed on two aspects of the research: first, the importance of ongoing, real-time interaction between the LiDAR analyst and the archaeological team in the field; and second, the advantages of exploiting the full potential of the three-dimensional LiDAR point cloud data for purposes of the visualization of archaeological sites and features
Statistics of counter-streaming solar wind suprathermal electrons at solar minimum : STEREO observations
Previous work has shown that solar wind suprathermal electrons can display a number of features in terms of their anisotropy. Of importance is the occurrence of counter-streaming electron patterns, i.e., with "beams" both parallel and anti-parallel to the local magnetic field, which is believed to shed light on the heliospheric magnetic field topology. In the present study, we use STEREO data to obtain the statistical properties of counter-streaming suprathermal electrons (CSEs) in the vicinity of corotating interaction regions (CIRs) during the period March–December 2007. Because this period corresponds to a minimum of solar activity, the results are unrelated to the sampling of large-scale coronal mass ejections, which can lead to CSE owing to their closed magnetic field topology. The present study statistically confirms that CSEs are primarily the result of suprathermal electron leakage from the compressed CIR into the upstream regions with the combined occurrence of halo depletion at 90° pitch angle. The occurrence rate of CSE is found to be about 15–20% on average during the period analyzed (depending on the criteria used), but superposed epoch analysis demonstrates that CSEs are preferentially observed both before and after the passage of the stream interface (with peak occurrence rate >35% in the trailing high speed stream), as well as both inside and outside CIRs. The results quantitatively show that CSEs are common in the solar wind during solar minimum, but yet they suggest that such distributions would be much more common if pitch angle scattering were absent. We further argue that (1) the formation of shocks contributes to the occurrence of enhanced counter-streaming sunward-directed fluxes, but does not appear to be a necessary condition, and (2) that the presence of small-scale transients with closed-field topologies likely also contributes to the occurrence of counter-streaming patterns, but only in the slow solar wind prior to CIRs
- …
