488 research outputs found
Gluon mass generation in the PT-BFM scheme
In this article we study the general structure and special properties of the
Schwinger-Dyson equation for the gluon propagator constructed with the pinch
technique, together with the question of how to obtain infrared finite
solutions, associated with the generation of an effective gluon mass.
Exploiting the known all-order correspondence between the pinch technique and
the background field method, we demonstrate that, contrary to the standard
formulation, the non-perturbative gluon self-energy is transverse
order-by-order in the dressed loop expansion, and separately for gluonic and
ghost contributions. We next present a comprehensive review of several subtle
issues relevant to the search of infrared finite solutions, paying particular
attention to the role of the seagull graph in enforcing transversality, the
necessity of introducing massless poles in the three-gluon vertex, and the
incorporation of the correct renormalization group properties. In addition, we
present a method for regulating the seagull-type contributions based on
dimensional regularization; its applicability depends crucially on the
asymptotic behavior of the solutions in the deep ultraviolet, and in particular
on the anomalous dimension of the dynamically generated gluon mass. A
linearized version of the truncated Schwinger-Dyson equation is derived, using
a vertex that satisfies the required Ward identity and contains massless poles
belonging to different Lorentz structures. The resulting integral equation is
then solved numerically, the infrared and ultraviolet properties of the
obtained solutions are examined in detail, and the allowed range for the
effective gluon mass is determined. Various open questions and possible
connections with different approaches in the literature are discussed.Comment: 54 pages, 24 figure
Beyond the public and private divide: Remapping transnational climate governance in de 21th century
This article provides a first step towards a better theoretical and empirical knowledge of the emerging arena of transnational climate governance. The need for such a re-conceptualization emerges from the increasing relevance of non-state and transnational approaches towards climate change mitigation at a time when the intergovernmental negotiation process has to overcome substantial stalemate and the international arena becomes increasingly fragmented. Based on a brief discussion of the increasing trend towards transnationalization and functional segmentation of the global climate governance arena, we argue that a remapping of climate governance is necessary and needs to take into account different spheres of authority beyond the public and international. Hence, we provide a brief analysis of how the public/private divide has been conceptualized in Political Science and International Relations. Subsequently, we analyse the emerging transnational climate governance arena. Analytically, we distinguish between different manifestations of transnational climate governance on a continuum ranging from delegated and shared public-private authority to fully non-state and private responses to the climate problem. We suggest that our remapping exercise presented in this article can be a useful starting point for future research on the role and relevance of transnational approaches to the global climate crisis
Model theory of finite and pseudofinite groups
This is a survey, intended both for group theorists and model theorists, concerning the structure of pseudofinite groups, that is, infinite models of the first-order theory of finite groups. The focus is on concepts from stability theory and generalisations in the context of pseudofinite groups, and on the information this might provide for finite group theory
Study of pulsed neon–xenon VUV radiating low pressure plasmas for mercury free fluorescent sign optimization
A Candidate M31/M32 Intergalactic Microlensing Event
We report the discovery of a microlensing candidate projected 2'54" from the
center of M32, on the side closest to M31. The blue color (R-I= 0.00 +/- 0.14)
of the source argues strongly that it lies in the disk of M31, while the
proximity of the line of sight to M32 implies that this galaxy is the most
likely host of the lens. If this interpretation is correct, it would confirm
previous arguments that M32 lies in front of M31. We estimate that of order one
such event or less should be present in the POINT-AGAPE data base. If more
events are discovered in this direction in a dedicated experiment, they could
be used to measure the mass function of M32 up to an unknown scale factor. By
combining microlensing observations of a binary-lens event with a measurement
of the M31-M32 relative proper motion using the astrometric satellites SIM or
GAIA, it will be possible to measure the physical separation of M31 and M32,
the last of the six phase-space coordinates needed to assign M32 an orbit.Comment: Submitted to ApJ Letters. 13 pages, 2 figure
A search for the most massive galaxies: Double Trouble?
We describe the results of a search for galaxies with large (> 350 km/s)
velocity dispersions. The largest systems we have found appear to be the
extremes of the early-type galaxy population: compared to other galaxies with
similar luminosities, they have the largest velocity dispersions and the
smallest sizes. However, they are not distant outliers from the Fundamental
Plane and mass-to-light scaling relations defined by the bulk of the early-type
galaxy population. They may host the most massive black holes in the Universe,
and their abundance and properties can be used to constrain galaxy formation
models. Clear outliers from the scaling relations tend to be objects in
superposition (angular separations smaller than 1 arcsec), evidence for which
comes sometimes from the spectra, sometimes from the images, and sometimes from
both. The statistical properties of the superposed pairs, e.g., the
distribution of pair separations and velocity dispersions, can be used to
provide useful information about the expected distribution of image
multiplicities, separations and flux ratios due to gravitational lensing by
multiple lenses, and may also constrain models of their interaction rates.Comment: 20 pages, 8 figures. Accepted by AJ. The full set of figures in
Appendix B is available at
http://www.physics.upenn.edu/~bernardm/PAPERS/BIGEtypes/bernardi.FIG-B.ps.gz
Figure 8 did not show the set of galaxies described in the text of the
appendix. This has now been correcte
Frost flowers growing in the Arctic ocean‐atmosphere–sea ice–snow interface: 2. Mercury exchange between the atmosphere, snow, and frost flowers
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95146/1/jgrd17360.pd
Sustained IFN signaling is associated with delayed development of SARS-CoV-2-specific immunity.
Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized patients with COVID-19. Integrated analysis using k-means reveals four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors segregate into high and low early antibody responders. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4 <sup>+</sup> T cell frequencies. These data suggest that the "Interferon paradox" previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity
Missed opportunities for earlier HIV testing and diagnosis at the health facilities of Dessie town, North East Ethiopia
- …
