1,301 research outputs found
A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem
A quantum system will stay near its instantaneous ground state if the
Hamiltonian that governs its evolution varies slowly enough. This quantum
adiabatic behavior is the basis of a new class of algorithms for quantum
computing. We test one such algorithm by applying it to randomly generated,
hard, instances of an NP-complete problem. For the small examples that we can
simulate, the quantum adiabatic algorithm works well, and provides evidence
that quantum computers (if large ones can be built) may be able to outperform
ordinary computers on hard sets of instances of NP-complete problems.Comment: 15 pages, 6 figures, email correspondence to [email protected] ; a
shorter version of this article appeared in the April 20, 2001 issue of
Science; see http://www.sciencemag.org/cgi/content/full/292/5516/47
A STOCHASTIC MODELING FOR THE UNSTABLE FINANCIAL MARKETS
Considering the present economic context, the measurement of performances has become a permanent preoccupation for organizations, since the whole process is based on it, offering the necessary feedback to identify both the positive actions which have led to favorable results for the organization, and the negative ones, in order to correct them in the future. To do this, we have to measure what is most importantly to measure. Starting from these considerations, the present paper approaches from a theoretical and practical point of view the economic rate of return as the indicator which synthesizes best an organization’s financial-economic performance. We have calculated and analyzed the economic rate of return for a group of Ten Romanian Firms in the food industry, through different calculation relations, pointing out the advantages/disadvantages of each calculation method.belated integral, forward-backward stochastic equations, pathwise uniqueness, financial modeling.
The Paths to Choreography Extraction
Choreographies are global descriptions of interactions among concurrent
components, most notably used in the settings of verification (e.g., Multiparty
Session Types) and synthesis of correct-by-construction software (Choreographic
Programming). They require a top-down approach: programmers first write
choreographies, and then use them to verify or synthesize their programs.
However, most existing software does not come with choreographies yet, which
prevents their application.
To attack this problem, we propose a novel methodology (called choreography
extraction) that, given a set of programs or protocol specifications,
automatically constructs a choreography that describes their behavior. The key
to our extraction is identifying a set of paths in a graph that represents the
symbolic execution of the programs of interest. Our method improves on previous
work in several directions: we can now deal with programs that are equipped
with a state and internal computation capabilities; time complexity is
dramatically better; we capture programs that are correct but not necessarily
synchronizable, i.e., they work because they exploit asynchronous
communication
Using Verification Technology to Specify and Detect Malware
Computer viruses and worms are major threats for our computer infrastructure, and thus, for economy and society at large. Recent work has demonstrated that a model checking based approach to malware detection can capture the semantics of security exploits more accurately than traditional approaches, and consequently achieve higher detection rates. In this approach, malicious behavior is formalized using the expressive specification language CTPL based on classic CTL. This paper gives an overview of our toolchain for malware detection and presents our new system for computer assisted generation of malicious code specifications
Distributed information consensus filters for simultaneous input and state estimation
This paper describes the distributed information filtering where a set of sensor networks are required to simultaneously estimate input and state of a linear discrete-time system from collaborative manner. Our research purpose is to develop a consensus strategy in which sensor nodes communicate within the network through a sequence of Kalman iterations and data diffusion. A novel recursive information filtering is proposed by integrating input estimation error into measurement data and weighted information matrices. On the fusing process, local system state filtering transmits estimation information using the consensus averaging algorithm, which penalizes the disagreement in a dynamic manner. A simulation example is provided to compare the performance of the distributed information filtering with optimal Gillijins–De Moor’s algorithm
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Measurement of shower development and its Moli\`ere radius with a four-plane LumiCal test set-up
A prototype of a luminometer, designed for a future e+e- collider detector,
and consisting at present of a four-plane module, was tested in the CERN PS
accelerator T9 beam. The objective of this beam test was to demonstrate a
multi-plane tungsten/silicon operation, to study the development of the
electromagnetic shower and to compare it with MC simulations. The Moli\`ere
radius has been determined to be 24.0 +/- 0.6 (stat.) +/- 1.5 (syst.) mm using
a parametrization of the shower shape. Very good agreement was found between
data and a detailed Geant4 simulation.Comment: Paper published in Eur. Phys. J., includes 25 figures and 3 Table
Performance of fully instrumented detector planes of the forward calorimeter of a Linear Collider detector
Detector-plane prototypes of the very forward calorimetry of a future
detector at an e+e- collider have been built and their performance was measured
in an electron beam. The detector plane comprises silicon or GaAs pad sensors,
dedicated front-end and ADC ASICs, and an FPGA for data concentration.
Measurements of the signal-to-noise ratio and the response as a function of the
position of the sensor are presented. A deconvolution method is successfully
applied, and a comparison of the measured shower shape as a function of the
absorber depth with a Monte-Carlo simulation is given.Comment: 25 pages, 32 figures, revised version following comments from
referee
- …
