854 research outputs found
Spurious trend switching phenomena in financial markets
The observation of power laws in the time to extrema of volatility, volume
and intertrade times, from milliseconds to years, are shown to result
straightforwardly from the selection of biased statistical subsets of
realizations in otherwise featureless processes such as random walks. The bias
stems from the selection of price peaks that imposes a condition on the
statistics of price change and of trade volumes that skew their distributions.
For the intertrade times, the extrema and power laws results from the format of
transaction data
Quantifying trading behavior in financial markets using Google Trends
Crises in financial markets affect humans worldwide. Detailed market data on trading decisions reflect some of the complex human behavior that has led to these crises. We suggest that massive new data sources resulting from human interaction with the Internet may offer a new perspective on the behavior of market participants in periods of large market movements. By analyzing changes in Google query volumes for search terms related to finance, we find patterns that may be interpreted as “early warning signs” of stock market moves. Our results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior
Scanning Raman spectroscopy of graphene antidot lattices: Evidence for systematic p-type doping
We have investigated antidot lattices, which were prepared on exfoliated
graphene single layers via electron-beam lithography and ion etching, by means
of scanning Raman spectroscopy. The peak positions, peak widths and intensities
of the characteristic phonon modes of the carbon lattice have been studied
systematically in a series of samples. In the patterned samples, we found a
systematic stiffening of the G band mode, accompanied by a line narrowing,
while the 2D mode energies are found to be linearly correlated with the G mode
energies. We interpret this as evidence for p-type doping of the nanostructured
graphene
Crowdsourcing Dialect Characterization through Twitter
We perform a large-scale analysis of language diatopic variation using
geotagged microblogging datasets. By collecting all Twitter messages written in
Spanish over more than two years, we build a corpus from which a carefully
selected list of concepts allows us to characterize Spanish varieties on a
global scale. A cluster analysis proves the existence of well defined
macroregions sharing common lexical properties. Remarkably enough, we find that
Spanish language is split into two superdialects, namely, an urban speech used
across major American and Spanish citites and a diverse form that encompasses
rural areas and small towns. The latter can be further clustered into smaller
varieties with a stronger regional character.Comment: 10 pages, 5 figure
Transport of Mars-Crossing Asteroids from the Quasi-Hilda Region
We employ set oriented methods in combination with graph partitioning algorithms to identify key dynamical regions in the Sun-Jupiter-particle three-body system. Transport rates from a region near the 3:2 Hilda resonance into the realm of orbits crossing Mars' orbit are computed. In contrast to common numerical approaches, our technique does not depend on single long term simulations of the underlying model. Thus, our statistical results are particularly reliable since they are not affected by a dynamical behavior which is almost nonergodic (i.e., dominated by strongly almost invariant sets)
Fractional Quantum Hall Effect in a Diluted Magnetic Semiconductor
We report the observation of the fractional quantum Hall effect in the lowest
Landau level of a two-dimensional electron system (2DES), residing in the
diluted magnetic semiconductor Cd(1-x)Mn(x)Te. The presence of magnetic
impurities results in a giant Zeeman splitting leading to an unusual ordering
of composite fermion Landau levels. In experiment, this results in an
unconventional opening and closing of fractional gaps around filling factor v =
3/2 as a function of an in-plane magnetic field, i.e. of the Zeeman energy. By
including the s-d exchange energy into the composite Landau level spectrum the
opening and closing of the gap at filling factor 5/3 can be modeled
quantitatively. The widely tunable spin-splitting in a diluted magnetic 2DES
provides a novel means to manipulate fractional states
Nonequilibrium effects due to charge fluctuations in intrinsic Josephson systems
Nonequilibrium effects in layered superconductors forming a stack of
intrinsic Josephson junctions are investigated. We discuss two basic
nonequilibrium effects caused by charge fluctuations on the superconducting
layers: a) the shift of the chemical potential of the condensate and b) charge
imbalance of quasi-particles, and study their influence on IV-curves and the
position of Shapiro steps.Comment: 17 pages, 2 figures, revised version slightly shortene
Reflectivity and Microwave Absorption in Crystals with Alternating Intrinsic Josephson Junctions
We compute the frequency and magnetic field dependencies of the reflectivity
in layered superconductors with two alternating intrinsic Josephson
junctions with different critical current densities and quasiparticle
conductivities for the electric field polarized along the c-axis. The parameter
describing the electronic compressibility of the layers and the charge
coupling of neighboring junctions was extracted for the
SmLaSrCuO superconductor from two independent
optical measurements, the fit of the loss function at zero magnetic
field and the magnetic field dependence of the peak positions in .
The experiments are consistent with a free electron value for near
the Josephson plasma frequencies.Comment: 4 pages, 4 postscript figures, misprints in table correcte
- …
