6 research outputs found

    Quantitative study of anode microstructure related to SOFC stack degradation

    Get PDF
    As the performances of Solid Oxide Fuel Cells (SOFC) get attractive, long term degradation becomes the main issue for this technology. Therefore it is essential to localise the origin of degradation and to understand its processes in order to find solutions and improve SOFC durability. The electrode microstructure ageing, in particular nickel grain coarsening at the anode side, is known to be a major process to cause performance loss. The increase in nickel particle size will diminish the Triple Phase Boundary (TPB), where fuel oxidation takes place, and decrease the anode electronic conductivity. These two effects degrade the electrochemical performance of the fuel electrode. Degradation is defined as the decrease of potential at constant current density with time in %/1000h or mV/1000h. This study is based on HTceramix® anode supported cells tested in stack conditions from 100 to more than 1000 hours. The anode microstructure has been characterized by Scanning Electron Microscopy (SEM). As the back scattered electron yield coefficients of nickel and yttria stabilized zirconia (YSZ) are very close, the contrast of the different phases (Ni, YSZ and pores) is low. Various techniques are used to enhance the contrast. A new technique is presented here using impregnation and SEM observation based on secondary electron yield coefficients to separate the phases. Image treatment and analysis is done with an in-house Mathematica® code. Image treatment follows four steps: 1. inhomogeneous background correction, 2. double thresholding, 3. cleaning of the binary images and 4. reconstruction of a three-phase image. Image analysis gives information about phase proportion, particle size, particle size distribution, contiguity and finally a new procedure is developed to compute TPB density. A model to describe the coarsening of the nickel particles is also developed. The model assumes an exponential growth of the nickel particles. Using a particle population balance, it estimates the growth of the nickel particles and the concomitant drop in the TPB length. This model is in very good agreement with experimental data, especially for relatively low fuel cell operation times (up to 100-200 hours). This model can be used in the estimation of operational parameters of the anode electrode such as the degradation rate using fundamental parameters of the cermet anode like the anode overpotential and the work of adhesion of the nickel particles on the YSZ substrate. This model gives the portion of stack degradation that corresponds to anode performance decrease due to particle sintering. Finally this study gives the possibility to isolate the degradation coming from the anode sintering and compare to the full SOFC stack degradation

    Quantitative study of Ni-zirconia anode micro- and nanostructure related to SOFC stack degradation

    No full text
    As the performances of Solid Oxide Fuel Cells (SOFC) get attractive, long term degradation becomes the main issue for this technology. Therefore it is essential to localise the origin of degradation and to understand its mechanisms in order to find solutions and to improve SOFC durability. Microstructural evolution of anode supported solid oxide fuel cells (SOFC) during medium-term stack testing has been characterized by scanning electron microscopy (SEM). A new technique is presented using low acceleration voltage SEM imaging to separate the three anode phases (nickel, yttria-stabilized zirconia and porosity). Microstructural quantification is obtained using a software code that yields phase proportions, particle sizes, particle size distribution and a direct measure of triple phase boundary (TPB) density (μm/μm3). In addition, an anode degradation model is developed. It describes the gradual degradation of the anode due to particle sintering and the concomitant loss of the three-phase-boundary. Fundamental, operational and structural parameters of the anode can be used to estimate the three-phase-boundary length evolution with time from the degradation rate. The combination of experimental results and modeling allows separating the degradation due to sintering of nickel particles from total stack degradation. Anode degradation occurs principally during the first 500 operating hours. For medium term stack operation (more than 1000 h), anode degradation is responsible for 18 % to 46 % of the total degradation depending on stack technology.CIMELEN

    Nickel-Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis

    No full text
    Microstructural evolution of anode supported solid oxide fuel cells (SOFC) during medium-term stack testing has been characterized by scanning electron microscopy (SEM). Low acceleration voltage SEM imaging is used to separate the three anode phases (nickel, yttria-stabilized zirconia and porosity). Microstructural quantification is obtained using a software code that yields phase proportion, particle size, particle size distribution and a direct measure of triple phase boundary (TPB) density. In addition, an anode degradation model is proposed. The model describes the gradual degradation of the anode due to nickel particle sintering and the concomitant loss of TPB. Fundamental operational and structural parameters of the anode can be used to estimate the TPB length change with time from the degradation rate. The combination of experimental results and modeling allows separating the degradation due to sintering of nickel particles from total stack degradation. Anode degradation occurs principally during the first 500 operating hours. For stack tests carried out over more than 1000 h, anode degradation was responsible for 18 % to 41 % of the total degradation depending on initial microstructure
    corecore