24,801 research outputs found
Explicit generation of the branching tree of states in spin glasses
We present a numerical method to generate explicit realizations of the tree
of states in mean-field spin glasses. The resulting study illuminates the
physical meaning of the full replica symmetry breaking solution and provides
detailed information on the structure of the spin-glass phase. A cavity
approach ensures that the method is self-consistent and permits the evaluation
of sophisticated observables, such as correlation functions. We include an
example application to the study of finite-size effects in single-sample
overlap probability distributions, a topic that has attracted considerable
interest recently.Comment: Version accepted for publication in JSTA
A molecular dynamics simulation of water confined in a cylindrical SiO2 pore
A molecular dynamics simulation of water confined in a silica pore is
performed in order to compare it with recent experimental results on water
confined in porous Vycor glass at room temperature. A cylindrical pore of 40 A
is created inside a vitreous SiO2 cell, obtained by computer simulation. The
resulting cavity offers to water a rough hydrophilic surface and its geometry
and size are similar to those of a typical pore in porous Vycor glass. The
site-site distribution functions of water inside the pore are evaluated and
compared with bulk water results. We find that the modifications of the
site-site distribution functions, induced by confinement, are in qualitative
agreement with the recent neutron diffraction experiment, confirming that the
disturbance to the microscopic structure of water mainly concerns orientational
arrangement of neighbouring molecules. A layer analysis of MD results indicates
that, while the geometrical constraint gives an almost constant density profile
up to the layers closest to the interface, with an uniform average number of
hydrogen bonds (HB), the hydrophilic interaction produces the wetting of the
pore surface at the expenses of the adjacent water layers. Moreover the
orientational disorder togheter with a reduction of the average number of HB
persists in the layers close to the interface, while water molecules cluster in
the middle of the pore at a density and with a coordination similar to bulk
water.Comment: RevTex, 11 pages, 12 figures; to appear in June 15 issue of J. Chem.
Phy
Addressing Item-Cold Start Problem in Recommendation Systems using Model Based Approach and Deep Learning
Traditional recommendation systems rely on past usage data in order to
generate new recommendations. Those approaches fail to generate sensible
recommendations for new users and items into the system due to missing
information about their past interactions. In this paper, we propose a solution
for successfully addressing item-cold start problem which uses model-based
approach and recent advances in deep learning. In particular, we use latent
factor model for recommendation, and predict the latent factors from item's
descriptions using convolutional neural network when they cannot be obtained
from usage data. Latent factors obtained by applying matrix factorization to
the available usage data are used as ground truth to train the convolutional
neural network. To create latent factor representations for the new items, the
convolutional neural network uses their textual description. The results from
the experiments reveal that the proposed approach significantly outperforms
several baseline estimators
Velocity shear, turbulent saturation, and steep plasma gradients in the scrape-off layer of inner-wall limited tokamaks
The narrow power decay-length (), recently found in the scrape-off
layer (SOL) of inner-wall limited (IWL) discharges in tokamaks, is studied
using 3D, flux-driven, global two-fluid turbulence simulations. The formation
of the steep plasma profiles measured is found to arise due to radially sheared
poloidal flows. A complex interaction between sheared
flows and outflowing plasma currents regulates the turbulent saturation,
determining the transport levels. We quantify the effects of sheared flows,
obtaining theoretical estimates in agreement with our non-linear simulations.
Analytical calculations suggest that the IWL is roughly equal to
the turbulent correlation length.Comment: 5 pages, 5 figure
A model for liquid-striped liquid phase separation in liquids of anisotropic polarons
The phase separation between a striped polaron liquid at the particular
density and a high density polaron liquid is described by a modified Van der
Waals scheme. The striped polaron liquid represents the pseudo gap matter or
Wigner-like polaron phase at 1/8 doping in cuprate superconductors. The model
includes the tendency of pseudo- Jahn-Teller polarons to form anisotropic
directional bonds at a preferential volume with the formation of different
liquid phases. The model gives the coexistence of a first low density polaron
striped liquid and a second high density liquid that appears in cuprate
superconductors for doping larger than 1/8. We discuss how the strength of
anisotropic bonds controls the variation the phase separation scenarios for
complex systems in the presence of a quantum critical point where the phase
separation vanishes.Comment: 10 pages, 3 figure
- …
