19,789 research outputs found

    Observations of vertical winds and the origin of thermospheric gravity waves launched by auroral substorms and westward travelling surges

    Get PDF
    Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location

    Descriptions of reversed yielding in bending

    Get PDF
    Existence of Bauschinger effect in bending-unbending of copper beams has been shown from experiment. In modelling of the Bauschinger effect, it is shown that a significant second plastic penetration can occur with the release of the moment required for an elasticplastic bending of a beam. The theory is given for both linear and parabolic hardening material models. The elastic and plastic strains are developed from each hardening model to express the beam curvature of the unstressed neutral axis. Conditions are expressed, using the normalized stress—strain response of a rectangular beam section, for which the release is purely elastic and elastic—plastic. Under the latter the depth to which a second zone of plasticity penetrates is given. Two stress distributions: one for applying the moment and the other for its release, are sufficient to derive the residual stress. Residuals found for parabolic hardening are believed to be more realistic than those from simpler linear or perfectly plastic models, particularly, where a second penetration is evident

    Reverse Transplant Tourism

    Get PDF
    In this article, we propose a novel form of kidney swap, which we label “Reverse Transplant Tourism.” This proposal has the potential to increase the number of successful transplants in the US at a time of great need, while reducing costs. It also will provide benefits to impoverished international patients with willing, compatible donors who otherwise would have no access to transplantation. Instead of non-US kidney donors being offered money through a black market middleman in exchange for one of their kidneys, Reverse Transplant Tourism would provide a legal and ethical exchange of living donor kidneys through kidney-paired donation. In this way, the donors will not receive money for their kidneys, but rather will receive a transplant for someone they love, while also helping a US pair who would otherwise be unable to transplant due to biological incompatibility

    Collector Failures on 350 MHz, 1.2 MW CW Klystrons at the Low Energy Demonstration Accelerator (LEDA)

    Get PDF
    We are currently operating the front end of the accelerator production of tritium (APT) accelerator, a 7 MeV radio frequency quadrapole (RFQ) using three, 1.2 MW CW klystrons. These klystrons are required and designed to dissipate the full beam power in the collector. The klystrons have less than 1500 operational hours. One collector has failed and all collectors are damaged. This paper will discuss the damage and the difficulties in diagnosing the cause. The collector did not critically fail. Tube operation was still possible and the klystron operated up to 70% of full beam power with excellent vacuum. The indication that finally led us to the collector failure was variable emission. This information will be discussed. A hydrophonic system was implemented to diagnose collector heating. The collectors are designed to allow for mixed-phase cooling and with the hydrophonic test equipment we are able to observe: normal, single-phase cooling, mixed-phase cooling, and a hard boil. These data will be presented. The worst case beam profile from a collector heating standpoint is presented. The paper will also discuss the steps taken to halt the collector damage on the remaining 350 MHz klystrons and design changes that are being implemented to correct the problem.Comment: LINAC2000 conference paper THE1

    Snow tussocks, chaos, and the evolution of mast seeding

    Get PDF
    One hitherto intractable problem in studying mast seeding (synchronous intermittent heavy flowering by a population of perennial plants) is determining the relative roles of weather, plant reserves, and evolutionary selective pressures such as predator satiation. We parameterize a mechanistic resource-based model for mast seeding in Chionochloa pallens (Poaceae) using a long-term individually structured data set. Each plant's energy reserves were reconstructed using annual inputs (growing degree days), outputs (flowering), and a novel regression technique. This allowed the estimation of the parameters that control internal plant resource dynamics, and thereby allowed different models for masting to be tested against each other. Models based only on plant size, season degree days, and/or climatic cues (warm January temperatures) fail to reproduce the pattern of autocovariation in individual flowering and the high levels of flowering synchrony seen in the field. This shows that resource-matching or simple cue-based models cannot account for this example of mast seeding. In contrast, the resource-based model pulsed by a simple climate cue accurately describes both individual-level and population-level aspects of the data. The fitted resource-based model, in the absence of environmental forcing, has chaotic (but often statistically periodic) dynamics. Environmental forcing synchronizes individual reproduction, and the models predict highly variable seed production in close agreement with the data. An evolutionary model shows that the chaotic internal resource dynamics, as predicted by the fitted model, is selectively advantageous provided that adult mortality is low and seeds survive for more than 1 yr, both of which are true for C. pallens. Highly variable masting and chaotic dynamics appear to be advantageous in this case because they reduce seed losses to specialist seed predators, while balancing the costs of missed reproductive events

    Afterglow lightcurves, viewing angle and the jet structure of gamma-ray bursts

    Full text link
    Gamma ray bursts are often modelled as jet-like outflows directed towards the observer; the cone angle of the jet is then commonly inferred from the time at which there is a steepening in the power-law decay of the afterglow. We consider an alternative model in which the jet has a beam pattern where the luminosity per unit solid angle (and perhaps also the initial Lorentz factor) decreases smoothly away from the axis, rather than having a well-defined cone angle within which the flow is uniform. We show that the break in the afterglow light curve then occurs at a time that depends on the viewing angle. Instead of implying a range of intrinsically different jets - some very narrow, and others with similar power spread over a wider cone - the data on afterglow breaks could be consistent with a standardized jet, viewed from different angles. We discuss the implication of this model for the luminosity function.Comment: Corrected typo in Eq. 1

    Reionization from cosmic string loops

    Get PDF
    Loops formed from a cosmic string network at early times would act as seeds for early formation of halos, which would form galaxies and lead to early reionization. With reasonable guesses about astrophysical and string parameters, the cosmic string scale GμG\mu must be no more than about 3×1083\times 10^{-8} to avoid conflict with the reionization redshift found by WMAP. The bound is much stronger for superstring models with a small string reconnection probability. For values near the bound, cosmic string loops may explain the discrepancy between the WMAP value and theoretical expectations.Comment: 7 pp., RevTeX, no figure

    Evolution of size-dependent flowering in Onopordum illyricum: A quantitative assessment of the role of stochastic selection pressures

    Get PDF
    We explore the evolution of delayed, size-dependent reproduction in the monocarpic perennial Onopordum illyricum, using a range of mathematical models, parameterized with long-term field data. Analysis of the long-term data indicated that mortality, flowering, and growth were age and size dependent. Using mixed models, we estimated the variance about each of these relationships and also individual-specific effects. For the held populations, recruitment was the main density-dependent process, although there were weak effects of local density on growth and mortality Using parameterized growth models, which assume plants grow along a deterministic trajectory, we predict plants should flower at sizes approximately 50% smaller than observed in the field. We then develop a simple criterion, termed the "1-yr look-ahead criterion," based on equating seed production now with that of next year, allowing for mortality and growth, to determine at what size a plant should flower. This model allows the incorporation of variance about the growth function and individual-specific effects. The model predicts flowering at sizes approximately double that observed, indicating that variance about the growth curve selects for larger sizes at flowering. The 1-yr look-ahead approach is approximate because it ignores growth opportunities more than 1 yr ahead. To assess the accuracy of this approach, we develop a more complicated dynamic state variable model. Both models give similar results indicating the utility of the 1-yr look-ahead criterion. To allow for temporal variation in the model parameters, we used an individual-based model with a generic algorithm. This gave very accurate prediction of the observed flowering strategies. Sensitivity analysis of the model suggested that temporal variation in the parameters of the growth equation made waiting to flower more risky, so selected for smaller sizes at flowering. The models clearly indicate the need to incorporate stochastic variation in life-history analyses

    Numerical simulations of the seasonal/latitudinal variations of atomic oxygen and nitric oxide in the lower thermosphere and mesosphere

    Get PDF
    A 2-Dimensional zonally-averaged thermospheric model and the global University College London (UCL) thermospheric model have been used to investigate the seasonal, solar activity and geomagnetic variation of atomic oxygen and nitric oxide. The 2-dimensional model includes detailed oxygen and nitrogen chemistry, with appropriate completion of the energy equation, by adding the thermal infrared cooling by O and NO. This solution includes solar and auroral production of odd nitrogen compounds and metastable species. This model has been used for three investigations; firstly, to study the interactions between atmospheric dynamics and minor species transport and density; secondly, to examine the seasonal variations of atomic oxygen and nitric oxide within the upper mesosphere and thermosphere and their response to solar and geomagnetic activity variations; thirdly, to study the factor of 7 to 8 peak nitric oxide density increase as solar F sub 10.7 cm flux increases from 70 to 240 reported from the Solar Mesospheric Explorer. Auroral production of NO is shown to be the dominant source at high latitudes, generating peak NO densities a factor of 10 greater than typical number densities at low latitudes. At low latitudes, the predicted variation of the peak NO density, near 110 km, with the solar F sub 10.7 cm flux is rather smaller than is observed. This is most likely due to an overestimate of the soft X-ray flux at low solar activity, for times of extremely low support number, as occurred in June 1986. As observed on pressure levels, the variation of O density is small. The global circulation during solstice and periods of elevated geomagnetic activity causes depletion of O in regions of upwelling, and enhancements in regions of downwelling

    Medical Marijuana Laws, Traffic Fatalities, and Alcohol Consumption

    Get PDF
    To date, 16 states have passed medical marijuana laws, yet very little is known about their effects. Using state-level data, we examine the relationship between medical marijuana laws and a variety of outcomes. Legalization of medical marijuana is associated with increased use of marijuana among adults, but not among minors. In addition, legalization is associated with a nearly 9 percent decrease in traffic fatalities, most likely to due to its impact on alcohol consumption. Our estimates provide strong evidence that marijuana and alcohol are substitutes.medical marijuana, traffic fatalities, alcohol consumption
    corecore