8,202 research outputs found
The Fluctuating Intergalactic Radiation Field at Redshifts z = 2.3-2.9 from He II and H I Absorption towards HE 2347-4342
We provide an in-depth analysis of the He II and H I absorption in the
intergalactic medium (IGM) at redshifts z = 2.3-2.9 toward HE 2347-4342, using
spectra from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the
Ultraviolet-Visual Echelle Spectrograph (UVES) on the VLT telescope. Following
up on our earlier study (Kriss et al. 2001, Science, 293, 1112), we focus here
on two major topics: (1) small-scale variability (Delta z = 10^-3) in the ratio
eta = N(He II)/N(H I); and (2) an observed correlation of high-eta absorbers
(soft radiation fields) with voids in the (H I) Ly-alpha distribution. These
effects may reflect fluctuations in the ionizing sources on scales of 1 Mpc,
together with radiative transfer through a filamentary IGM whose opacity
variations control the penetration of 1-5 ryd radiation over 30-40 Mpc
distances. Owing to photon statistics and backgrounds, we can measure optical
depths over the ranges 0.1 < tau(HeII) < 2.3 and 0.02 < tau(HI) < 3.9, and
reliably determine values of eta = 4 tau(HeII)/tau(HI) over the range 0.1 to
460. Values of eta = 20-200 are consistent with models of photoionization by
quasars with observed spectral indices alpha_s = 0-3. Values of eta > 200 may
require additional contributions from starburst galaxies, heavily filtered
quasar radiation, or density variations. Regions with eta < 30 may indicate the
presence of local hard sources. We find that eta is higher in "void" regions,
where H I is weak or undetected and 80% of the path length has eta > 100. These
voids may be ionized by soft sources (dwarf starbursts) or by QSO radiation
softened by escape from the AGN cores or transfer through the "cosmic web". The
apparent differences in ionizing spectra may help to explain the 1.45 Gyr lag
between the reionization epochs, z(HI) = 6.2 +/-0.2 and z(HeII) = 2.8 +/-0.2.Comment: 27 pages, 7 figures, to appear in Ap
A rotating helical filament in the L1251 dark cloud
(Abridged) Aims. We derive the physical properties of a filament discovered
in the dark cometary-shaped cloud L1251. Methods. Mapping observations in the
NH3(1,1) and (2,2) inversion lines, encompassing 300 positions toward L1251,
were performed with the Effelsberg 100-m telescope at a spatial resolution of
40 arcsec and a spectral resolution of 0.045 km/s. Results. The filament L1251A
consists of three condensations (alpha, beta, and gamma) of elongated
morphology, which are combined in a long and narrow structure covering a 38
arcmin by 3 arcmin angular range. The opposite chirality (dextral and
sinistral) of the alpha+beta and gamma condensations indicates magnetic field
helicities of two types, negative and positive, which were most probably caused
by dynamo mechanisms. We estimated the magnetic Reynolds number Rm > 600 and
the Rossby number R < 1, which means that dynamo action is important.Comment: 21 pages, 10 figures, 1 table. Accepted for publication in A&
The QSO evolution derived from the HBQS and other complete QSO surveys
An ESO Key programme dedicated to an Homogeneous Bright QSO Survey (HBQS) has
been completed. 327 QSOs (Mb<-23, 0.3<z<2.2) have been selected over 555 deg^2
with 15<B<18.75. For B<16.4 the QSO surface density turns out to be a factor
2.2 higher than what measured by the PG survey, corresponding to a surface
density of 0.013+/-.006 deg^{-2}. If the Edinburgh QSO Survey is included, an
overdensity of a factor 2.5 is observed, corresponding to a density of
0.016+/-0.005 deg^{-2}. In order to derive the QSO optical luminosity function
(LF) we used Monte Carlo simulations that take into account of the selection
criteria, photometric errors and QSO spectral slope distribution. The LF can be
represented with a Pure Luminosity Evolution (L(z)\propto(1+z)^k) of a two
power law both for q_0=0.5 and q_0=0.1. For q_0=0.5 k=3.26, slower than the
previous Boyle's (1992) estimations of k=3.45. A flatter slope beta=-3.72 of
the bright part of the LF is also required. The observed overdensity of bright
QSOs is concentrated at z<0.6. It results that in the range 0.3<z<0.6 the
luminosity function is flatter than observed at higher redshifts. In this
redshift range, for Mb<-25, 32 QSOs are observed instead of 19 expected from
our best-fit PLE model. This feature requires a luminosity dependent luminosity
evolution in order to satisfactorily represent the data in the whole 0.3<z<2.2
interval.Comment: Invited talk in "Wide Field Spectroscopy" (20-24 May 1996, Athens),
eds. M. Kontizas et al. 6 pages and 3 eps figures, LaTex file, uses epfs.sty
and crckapb.sty (included
Sensitivity of the isotopologues of hydronium to variation of the electron-to-proton mass ratio
We study the sensitivity of the microwave and submillimeter transitions of
the isotopologues of hydronium to the variation of the electron-to-proton mass
ratio mu. These sensitivities are enhanced for the low frequency mixed
inversion-rotational transitions. The lowest frequency transition (6.6 GHz)
takes place for isotopologue H2DO+ and respective sensitivity to mu-variation
is close to 200. This is about two orders of magnitude larger than the
sensitivity of the inversion transition in ammonia, which is currently used for
the search of mu-variation in astrophysics.Comment: 6 pages; v2: references correcte
Reionization of Hydrogen and Helium by Early Stars and Quasars
We compute the reionization histories of hydrogen and helium due to the
ionizing radiation fields produced by stars and quasars. For the quasars we use
a model based on halo-merger rates that reproduces all known properties of the
quasar luminosity function at high redshifts. The less constrained properties
of the ionizing radiation produced by stars are modeled with two free
parameters: (i) a transition redshift, z_tran, above which the stellar
population is dominated by massive, zero-metallicity stars and below which it
is dominated by a Scalo mass function; (ii) the product of the escape fraction
of stellar ionizing photons from their host galaxies and the star-formation
efficiency, f_esc f_*. We constrain the allowed range of these free parameters
at high redshifts based on the lack of the HI Gunn-Peterson trough at z<6 and
the upper limit on the total intergalactic optical depth for electron
scattering, tau_es<0.18, from recent cosmic microwave background (CMB)
experiments. We find that quasars ionize helium by a redshift z~4, but cannot
reionize hydrogen by themselves before z~6. A major fraction of the allowed
combinations of f_esc f_* and z_tran lead to an early peak in the ionized
fraction due to metal-free stars at high redshifts. This sometimes results in
two reionization epochs, namely an early HII or HeIII overlap phase followed by
recombination and a second overlap phase. Even if early overlap is not
achieved, the peak in the visibility function for scattering of the CMB often
coincides with the early ionization phase rather than with the actual
reionization epoch. Consequently, tau_es does not correspond directly to the
reionization redshift. We generically find values of tau_es>7%, that should be
detectable by the MAP satellite.Comment: 33 pages, 10 figures, Accepted for publication in Ap
- …
