1,616 research outputs found
Attenuation measurements in artificial clouds Final technical report
Attenuation and near-forward scattering of both ice and water fogs and dependence of spectral curves of transmittance on particle size distributio
Structured illumination diffuse optical tomography for noninvasive functional neuroimaging in mice
Catalytic asymmetric synthesis of highly substituted pyrrolizidines
A catalytic asymmetric double (1,3)-dipolar cycloaddition reaction has been developed. Using a chiral silver catalyst, enantioenriched pyrrolizidines can be prepared in one flask from inexpensive, commercially available starting materials. The pyrrolizidine products contain a variety of substitution patterns and as many as six stereogenic centers
Cooperative action in eukaryotic gene regulation: physical properties of a viral example
The Epstein-Barr virus (EBV) infects more than 90% of the human population,
and is the cause of several both serious and mild diseases. It is a
tumorivirus, and has been widely studied as a model system for gene
(de)regulation in human. A central feature of the EBV life cycle is its ability
to persist in human B cells in states denoted latency I, II and III. In latency
III the host cell is driven to cell proliferation and hence expansion of the
viral population, but does not enter the lytic pathway, and no new virions are
produced, while the latency I state is almost completely dormant. In this paper
we study a physico-chemical model of the switch between latency I and latency
III in EBV. We show that the unusually large number of binding sites of two
competing transcription factors, one viral and one from the host, serves to
make the switch sharper (higher Hill coefficient), either by cooperative
binding between molecules of the same species when they bind, or by competition
between the two species if there is sufficient steric hindrance.Comment: 7 pages, 6 figures, 1 tabl
The importance of individualized pharmaceutical therapy in the treatment of diabetes mellitus
Individualized pharmaceutical care for patients with diabetes is necessary for several reasons. First, diabetes is a highly complex disease caused by the interplay among genetic, physiological, and environmental factors that vary from individual to individual. Second, the profile of patients with diabetes has evolved to include people of all ages and socioeconomic backgrounds, with varying medical histories and health behaviors. Third, diabetes often occurs concurrently with other medical conditions, especially in certain groups, such as the elderly. While the treatment goals for all patients with diabetes are the sameto stabilize and maintain healthy blood glucose levels to prevent serious complicationsthe treatment plan used to achieve those goals will vary among individuals. There are many clinically proven options available for the treatment of diabetes. While there are well-established guidelines regarding which intervention is the best option for patients with either type 1 or type 2 diabetes, individual patient characteristics and needs should drive the care process. Assuring patient access to the wide variety of medications is crucial to meeting these needs and achieving quality, cost-effective diabetes management
Soft systems methodology: a context within a 50-year retrospective of OR/MS
Soft systems methodology (SSM) has been used in the practice of operations research and management science OR/MS) since the early 1970s. In the 1990s, it emerged as a viable academic discipline. Unfortunately, its proponents consider SSM and traditional systems thinking to be mutually exclusive. Despite the differences claimed by SSM proponents between the two, they have been complementary. An extensive sampling of the OR/MS literature over its entire lifetime demonstrates the richness with which the non-SSM literature has been addressing the very same issues as does SSM
Optical Coherence Tomography in the UK Biobank Study - Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies
PURPOSE:
To describe an approach to the use of optical coherence tomography (OCT) imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness.
METHODS:
In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available “spectral domain” OCT device (3D OCT-1000, Topcon). Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL). This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion.
RESULTS:
67,321 participants (134,642 eyes) in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days.
CONCLUSIONS:
We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging
A projection method for multiphase flows
An Eulerian projection approach for incompressible variable-density two-phase flows is presented. The Navier-Stokes equations governing these flows are reformulated to take the form of the corresponding equations for the lighter phase with a constant density, which can be efficiently solved using standard numerical methods. The effect of the additional mass in the heavier phase is accounted for by a forcing term, which is determined from the solution of an artificial velocity field. This artificial field is subjected solely to inertial and gravity forces as well as the force coupling the flow field and the artificial field. The phase interface in this purely Eulerian approach is described using the level-set method. Results for two-dimensional simulations of the Rayleigh-Taylor instability are presented to validate the new method
An archival case study : revisiting the life and political economy of Lauchlin Currie
This paper forms part of a wider project to show the significance of archival material on distinguished economists, in this case Lauchlin Currie (1902-93), who studied and taught at Harvard before entering government service at the US Treasury and Federal Reserve Board as the intellectual leader of Roosevelt's New Deal, 1934-39, as FDR's White House economic adviser in peace and war, 1939-45, and as a post-war development economist. It discusses the uses made of the written and oral material available when the author was writing his intellectual biography of Currie (Duke University Press 1990) while Currie was still alive, and the significance of the material that has come to light after Currie's death
- …
