994 research outputs found

    On the Tutte-Krushkal-Renardy polynomial for cell complexes

    Full text link
    Recently V. Krushkal and D. Renardy generalized the Tutte polynomial from graphs to cell complexes. We show that evaluating this polynomial at the origin gives the number of cellular spanning trees in the sense of A. Duval, C. Klivans, and J. Martin. Moreover, after a slight modification, the Tutte-Krushkal-Renardy polynomial evaluated at the origin gives a weighted count of cellular spanning trees, and therefore its free term can be calculated by the cellular matrix-tree theorem of Duval et al. In the case of cell decompositions of a sphere, this modified polynomial satisfies the same duality identity as the original polynomial. We find that evaluating the Tutte-Krushkal-Renardy along a certain line gives the Bott polynomial. Finally we prove skein relations for the Tutte-Krushkal-Renardy polynomial..Comment: Minor revision according to a reviewer comments. To appear in the Journal of Combinatorial Theory, Series

    Well-posedness of boundary layer equations for time-dependent flow of non-Newtonian fluids

    Full text link
    We consider the flow of an upper convected Maxwell fluid in the limit of high Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be imposed on the solutions. We derive equations for the resulting boundary layer and prove the well-posedness of these equations. A transformation to Lagrangian coordinates is crucial in the argument

    On the Evolution Equation for Magnetic Geodesics

    Full text link
    In this paper we prove the existence of long time solutions for the parabolic equation for closed magnetic geodesics.Comment: In this paper we prove the existence of long time solutions for the parabolic equation for closed magnetic geodesic

    Coexisting Pulses in a Model for Binary-Mixture Convection

    Full text link
    We address the striking coexistence of localized waves (`pulses') of different lengths which was observed in recent experiments and full numerical simulations of binary-mixture convection. Using a set of extended Ginzburg-Landau equations, we show that this multiplicity finds a natural explanation in terms of the competition of two distinct, physical localization mechanisms; one arises from dispersion and the other from a concentration mode. This competition is absent in the standard Ginzburg-Landau equation. It may also be relevant in other waves coupled to a large-scale field.Comment: 5 pages revtex with 4 postscript figures (everything uuencoded

    Global Solutions for Incompressible Viscoelastic Fluids

    Full text link
    We prove the existence of both local and global smooth solutions to the Cauchy problem in the whole space and the periodic problem in the n-dimensional torus for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial data. The results hold in both two and three dimensional spaces. The results and methods presented in this paper are also valid for a wide range of elastic complex fluids, such as magnetohydrodynamics, liquid crystals and mixture problems.Comment: We prove the existence of global smooth solutions to the Cauchy problem for the incompressible viscoelastic system of Oldroyd-B type in the case of near equilibrium initial dat

    Surface Gap Soliton Ground States for the Nonlinear Schr\"{o}dinger Equation

    Full text link
    We consider the nonlinear Schr\"{o}dinger equation (Δ+V(x))u=Γ(x)up1u(-\Delta +V(x))u = \Gamma(x) |u|^{p-1}u, xRnx\in \R^n with V(x)=V1(x)χ{x1>0}(x)+V2(x)χ{x1<0}(x)V(x) = V_1(x) \chi_{\{x_1>0\}}(x)+V_2(x) \chi_{\{x_1<0\}}(x) and Γ(x)=Γ1(x)χ{x1>0}(x)+Γ2(x)χ{x1<0}(x)\Gamma(x) = \Gamma_1(x) \chi_{\{x_1>0\}}(x)+\Gamma_2(x) \chi_{\{x_1<0\}}(x) and with V1,V2,Γ1,Γ2V_1, V_2, \Gamma_1, \Gamma_2 periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state H1H^1 solutions (surface gap soliton ground states) for 0<minσ(Δ+V)0<\min \sigma(-\Delta +V). Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with VV1,ΓΓ1V\equiv V_1, \Gamma\equiv \Gamma_1 and VV2,ΓΓ2V\equiv V_2, \Gamma\equiv \Gamma_2) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators d2dx2+V1(x)-\tfrac{d^2}{dx^2} +V_1(x) and d2dx2+V2(x)-\tfrac{d^2}{dx^2} +V_2(x).Comment: definition of ground and bound states added, assumption (H2) weakened (sign changing nonlinearity is now allowed); 33 pages, 4 figure

    Pearling and Pinching: Propagation of Rayleigh Instabilities

    Full text link
    A new category of front propagation problems is proposed in which a spreading instability evolves through a singular configuration before saturating. We examine the nature of this front for the viscous Rayleigh instability of a column of one fluid immersed in another, using the marginal stability criterion to estimate the front velocity, front width, and the selected wavelength in terms of the surface tension and viscosity contrast. Experiments are suggested on systems that may display this phenomenon, including droplets elongated in extensional flows, capillary bridges, liquid crystal tethers, and viscoelastic fluids. The related problem of propagation in Rayleigh-like systems that do not fission is also considered.Comment: Revtex, 7 pages, 4 ps figs, PR

    Oscillations of a solid sphere falling through a wormlike micellar fluid

    Full text link
    We present an experimental study of the motion of a solid sphere falling through a wormlike micellar fluid. While smaller or lighter spheres quickly reach a terminal velocity, larger or heavier spheres are found to oscillate in the direction of their falling motion. The onset of this instability correlates with a critical value of the velocity gradient scale Γc1\Gamma_{c}\sim 1 s1^{-1}. We relate this condition to the known complex rheology of wormlike micellar fluids, and suggest that the unsteady motion of the sphere is caused by the formation and breaking of flow-induced structures.Comment: 4 pages, 4 figure

    The Johnson-Segalman model with a diffusion term in Couette flow

    Full text link
    We study the Johnson-Segalman (JS) model as a paradigm for some complex fluids which are observed to phase separate, or ``shear-band'' in flow. We analyze the behavior of this model in cylindrical Couette flow and demonstrate the history dependence inherent in the local JS model. We add a simple gradient term to the stress dynamics and demonstrate how this term breaks the degeneracy of the local model and prescribes a much smaller (discrete, rather than continuous) set of banded steady state solutions. We investigate some of the effects of the curvature of Couette flow on the observable steady state behavior and kinetics, and discuss some of the implications for metastability.Comment: 14 pp, to be published in Journal of Rheolog

    Global generalized solutions for Maxwell-alpha and Euler-alpha equations

    Full text link
    We study initial-boundary value problems for the Lagrangian averaged alpha models for the equations of motion for the corotational Maxwell and inviscid fluids in 2D and 3D. We show existence of (global in time) dissipative solutions to these problems. We also discuss the idea of dissipative solution in an abstract Hilbert space framework.Comment: 27 pages, to appear in Nonlinearit
    corecore