155 research outputs found

    Local Tunneling Study of Three-Dimensional Order Parameter in the π\pi-band of Al-doped MgB2_2 Single Crystals

    Full text link
    We have performed local tunneling spectroscopy on high quality Mg1x_{1-x}Alx_xB2_2 single crystals by means of Variable Temperature Scanning Tunneling Spectroscopy (STS) in magnetic field up to 3 Tesla. Single gap conductance spectra due to c-axis tunneling were extensively measured, probing different amplitudes of the three-dimensional Δπ\Delta_\pi as a function of Al content. Temperature and magnetic field dependences of the conductance spectra were studied in S-I-N configuration: the effect of the doping resulted in a monotonous reduction of the locally measured TCT_C down to 24K for x=0.2. On the other hand, we have found that the gap amplitude shows a maximum value Δπ=2.3\Delta_\pi= 2.3 meV for x=0.1, while the Δπ/TC\Delta_\pi / T_C ratio increases monotonously with doping. The locally measured upper critical field was found to be strongly related to the gap amplitude, showing the maximum value Hc23TH_{c2}\simeq3T for x=0.1 substituted samples. For this Al concentration the data revealed some spatial inhomogeneity in the distribution of Δπ\Delta_\pi on nanometer scale.Comment: 4 pages, 3 figure

    Constraints on the Quasiparticle Density of States in High-TcT_c Superconductors

    Full text link
    In this Letter we present new tunneling data on YBa2_2Cu3_3O7_7 thin films by low temperature scanning tunneling spectroscopy. Unusual peak-dip-hump features, previously reported in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, are also found in YBa2_2Cu3_3O7_7. To analyse these common signatures we propose a new heuristic model in which, in addition to the d-wave symmetry, the gap function is energy dependent. A simple expression for the quasiparticle density of states is derived, giving an excellent agreement with the experiment. The dynamics of the quasiparticle states and the energy scales involved in the superconducting transition are discussed.Comment: 4 page Letter with 3 figure

    Local tunneling spectroscopy of the electron-doped cuprate Sm1.85Ce0.15CuO4

    Full text link
    We present local tunneling spectroscopy in the optimally electron-doped cuprate Sm2-xCexCuO4 x=0.15. A clear signature of the superconducting gap is observed with an amplitude ranging from place to place and from sample to sample (Delta~3.5-6meV). Another spectroscopic feature is simultaneously observed at high energy above \pm 50meV. Its energy scale and temperature evolution is found to be compatible with previous photoemission and optical experiments. If interpreted as the signature of antiferromagnetic order in the samples, these results could suggest the coexistence on the local scale of antiferromagnetism and superconductivity on the electron-doped side of cuprate superconductors

    Two Gap State Density in MgB2_{2}: A True Bulk Property or A Proximity Effect?

    Full text link
    We report on the temperature dependence of the quasiparticle density of states (DOS) in the simple binary compound MgB2 directly measured using scanning tunneling microscope (STM). To achieve high quality tunneling conditions, a small crystal of MgB2 is used as a tip in the STM experiment. The ``sample'' is chosen to be a 2H-NbSe2 single crystal presenting an atomically flat surface. At low temperature the tunneling conductance spectra show a gap at the Fermi energy followed by two well-pronounced conductance peaks on each side. They appear at voltages VS±3.8_{S}\simeq \pm 3.8 mV and VL±7.8_{L}\simeq \pm 7.8 mV. With rising temperature both peaks disappear at the Tc of the bulk MgB2, a behavior consistent with the model of two-gap superconductivity. The explanation of the double-peak structure in terms of a particular proximity effect is also discussed.Comment: 4 pages, 3 figure

    Proximity effect between two superconductors spatially resolved by scanning tunneling spectroscopy

    Full text link
    We present a combined experimental and theoretical study of the proximity effect in an atomic-scale controlled junction between two different superconductors. Elaborated on a Si(111) surface, the junction comprises a Pb nanocrystal with an energy gap of 1.2 meV, connected to a crystalline atomic monolayer of lead with a gap of 0.23 meV. Using in situ scanning tunneling spectroscopy we probe the local density of states of this hybrid system both in space and in energy, at temperatures below and above the critical temperature of the superconducting monolayer. Direct and inverse proximity effects are revealed with high resolution. Our observations are precisely explained with the help of a self-consistent solution of the Usadel equations. In particular, our results demonstrate that in the vicinity of the Pb islands, the Pb monolayer locally develops a finite proximity-induced superconducting order parameter, well above its own bulk critical temperature. This leads to a giant proximity effect where the superconducting correlations penetrate inside the monolayer a distance much larger than in a non-superconducting metal.Comment: 13 pages, 14 figures, accepted for publication in Physical Review

    Probing the superfluid velocity with a superconducting tip: the Doppler shift effect

    Full text link
    We address the question of probing the supercurrents in superconducting (SC) samples on a local scale by performing Scanning Tunneling Spectroscopy (STS) experiments with a SC tip. In this configuration, we show that the tunneling conductance is highly sensitive to the Doppler shift term in the SC quasiparticle spectrum of the sample, thus allowing the local study of the superfluid velocity. Intrinsic screening currents, such as those surrounding the vortex cores in a type II SC in a magnetic field, are directly probed. With Nb tips, the STS mapping of the vortices, in single crystal 2H-NbSe_2, reveals both the vortex cores, on the scale of the SC coherence length ξ\xi, and the supercurrents, on the scale of the London penetration length λ\lambda. A subtle interplay between the SC pair potential and the supercurrents at the vortex edge is observed. Our results open interesting prospects for the study of screening currents in any superconductor.Comment: 4 pages, 5 figure

    Scanning Tunneling Spectroscopy on the novel superconductor CaC6

    Full text link
    We present scanning tunneling microscopy and spectroscopy of the newly discovered superconductor CaC6_6. The tunneling conductance spectra, measured between 3 K and 15 K, show a clear superconducting gap in the quasiparticle density of states. The gap function extracted from the spectra is in good agreement with the conventional BCS theory with Δ(0)\Delta(0) = 1.6 ±\pm 0.2 meV. The possibility of gap anisotropy and two-gap superconductivity is also discussed. In a magnetic field, direct imaging of the vortices allows to deduce a coherence length in the ab plane ξab\xi_{ab}\simeq 33 nm

    Chiral spin texture in the charge-density-wave phase of the correlated metallic Pb/Si(111) monolayer

    Full text link
    We investigate the 1/3 monolayer α\alpha-Pb/Si(111) surface by scanning tunneling spectroscopy (STS) and fully relativistic first-principles calculations. We study both the high-temperature 3×3\sqrt{3}\times\sqrt{3} and low-temperature 3×33\times 3 reconstructions and show that, in both phases, the spin-orbit interaction leads to an energy splitting as large as 25%25\% of the valence-band bandwidth. Relativistic effects, electronic correlations and Pb-substrate interaction cooperate to stabilize a correlated low-temperature paramagnetic phase with well-developed lower and upper Hubbard bands coexisting with 3×33\times3 periodicity. By comparing the Fourier transform of STS conductance maps at the Fermi level with calculated quasiparticle interference from non-magnetic impurities, we demonstrate the occurrence of two large hexagonal Fermi sheets with in-plane spin polarizations and opposite helicities.Comment: 5 pages, 3 figure

    Probing the superconducting condensate on a nanometer scale

    Full text link
    Superconductivity is a rare example of a quantum system in which the wavefunction has a macroscopic quantum effect, due to the unique condensate of electron pairs. The amplitude of the wavefunction is directly related to the pair density, but both amplitude and phase enter the Josephson current : the coherent tunneling of pairs between superconductors. Very sensitive devices exploit the superconducting state, however properties of the {\it condensate} on the {\it local scale} are largely unknown, for instance, in unconventional high-Tc_c cuprate, multiple gap, and gapless superconductors. The technique of choice would be Josephson STS, based on Scanning Tunneling Spectroscopy (STS), where the condensate is {\it directly} probed by measuring the local Josephson current (JC) between a superconducting tip and sample. However, Josephson STS is an experimental challenge since it requires stable superconducting tips, and tunneling conditions close to atomic contact. We demonstrate how these difficulties can be overcome and present the first spatial mapping of the JC on the nanometer scale. The case of an MgB2_2 film, subject to a normal magnetic field, is considered.Comment: 7 pages, 6 figure
    corecore