293 research outputs found

    Microbiome Composition and Function Drives Wound-Healing Impairment in the Female Genital Tract

    Get PDF
    The mechanism(s) by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT) health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV) using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity

    Histone Deacetylase Inhibitor Romidepsin Induces HIV Expression in CD4 T Cells from Patients on Suppressive Antiretroviral Therapy at Concentrations Achieved by Clinical Dosing

    Get PDF
    Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 μM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART

    A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4⁺ T-Cells to Recognition by Cytotoxic T-Lymphocytes

    Get PDF
    Resting CD4⁺ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8⁺ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8⁺ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8⁺ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8⁺ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8⁺ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam₃CSK₄. In contrast, we did not observe CD8⁺ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8⁺ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8⁺ T-cells in HIV eradication strategies.United States. National Institutes of Health (AI111860

    The neovaginal microbiome of transgender women post-gender reassignment surgery

    Get PDF
    BackgroundGender reassignment surgery is a procedure some transgender women (TW) undergo for gender-affirming purposes. This often includes the construction of a neovagina using existing penile and scrotal tissue and/or a sigmoid colon graft. There are limited data regarding the composition and function of the neovaginal microbiome representing a major gap in knowledge in neovaginal health.ResultsMetaproteomics was performed on secretions collected from the neovaginas (n = 5) and rectums (n = 7) of TW surgically reassigned via penile inversion/scrotal graft with (n = 1) or without (n = 4) a sigmoid colon graft extension and compared with secretions from cis vaginas (n = 32). We identified 541 unique bacterial proteins from 38 taxa. The most abundant taxa in the neovaginas were Porphyromonas (30.2%), Peptostreptococcus (9.2%), Prevotella (9.0%), Mobiluncus (8.0%), and Jonquetella (7.2%), while cis vaginas were primarily Lactobacillus and Gardnerella. Rectal samples were mainly composed of Prevotella and Roseburia. Neovaginas (median Shannon's H index = 1.33) had higher alpha diversity compared to cis vaginas (Shannon's H = 0.35) (p = 7.2E-3, Mann-Whitney U test) and were more similar to the non-Lactobacillus dominant/polymicrobial cis vaginas based on beta diversity (perMANOVA, p = 0.001, r2 = 0.342). In comparison to cis vaginas, toll-like receptor response, amino acid, and short-chain fatty acid metabolic pathways were increased (p < 0.01), while keratinization and cornification proteins were decreased (p < 0.001) in the neovaginal proteome.ConclusionsPenile skin-lined neovaginas have diverse, polymicrobial communities that show similarities in composition to uncircumcised penises and host responses to cis vaginas with bacterial vaginosis (BV) including increased immune activation pathways and decreased epithelial barrier function. Developing a better understanding of microbiome-associated inflammation in the neovaginal environment will be important for improving our knowledge of neovaginal health. Video Abstract
    corecore