5,586 research outputs found

    The unusual distribution of molecular gas and star formation in Arp 140

    Get PDF
    We investigate the atomic and molecular interstellar medium and star formation of NGC 275, the late-type spiral galaxy in Arp 140, which is interacting with NGC 274, an early-type system. The atomic gas (HI) observations reveal a tidal tail from NGC 275 which extends many optical radii beyond the interacting pair. The HI morphology implies a prograde encounter between the galaxy pair approximately 1.5 x 10**8 years ago. The Halpha emission from NGC 275 indicates clumpy irregular star-formation, clumpiness which is mirrored by the underlying mass distribution as traced by the Ks-band emission. The molecular gas distribution is striking in its anti-correlation with the {HII regions. Despite the evolved nature of NGC 275's interaction and its barred potential, neither the molecular gas nor the star formation are centrally concentrated. We suggest that this structure results from stochastic star formation leading to preferential consumption of the gas in certain regions of the galaxy. In contrast to the often assumed picture of interacting galaxies, NGC 275, which appears to be close to merger, does not display enhanced or centrally concentrated star formation. If the eventual merger is to lead to a significant burst of star formation it must be preceded by a significant conversion of atomic to molecular gas as at the current rate of star formation all the molecular gas will be exhausted by the time the merger is complete.Comment: 13 paper, accepted my Monthly Notices of the Royal Astronomical Societ

    Caste and Exclusion: Issues of Theory and Policy

    Get PDF

    The Linear Point: A cleaner cosmological standard ruler

    Full text link
    We show how a characteristic length scale imprinted in the galaxy two-point correlation function, dubbed the "linear point", can serve as a comoving cosmological standard ruler. In contrast to the Baryon Acoustic Oscillation peak location, this scale is constant in redshift and is unaffected by non-linear effects to within 0.50.5 percent precision. We measure the location of the linear point in the galaxy correlation function of the LOWZ and CMASS samples from the Twelfth Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) collaboration. We combine our linear-point measurement with cosmic-microwave-background constraints from the Planck satellite to estimate the isotropic-volume distance DV(z)D_{V}(z), without relying on a model-template or reconstruction method. We find DV(0.32)=1264±28D_V(0.32)=1264\pm 28 Mpc and DV(0.57)=2056±22D_V(0.57)=2056\pm 22 Mpc respectively, consistent with the quoted values from the BOSS collaboration. This remarkable result suggests that all the distance information contained in the baryon acoustic oscillations can be conveniently compressed into the single length associated with the linear point.Comment: The optimal two-point correlation function bin-size is employed. Results are updated and the distance constraints are improve

    Secular Evolution Via Bar-Driven Gas Inflow: Results from BIMA SONG

    Full text link
    We present an analysis of the molecular gas distributions in the 29 barred and 15 unbarred spirals in BIMA SONG. For CO-bright galaxies, we confirm the conclusion by Sakamoto et al. (1999b) that barred spirals have higher molecular gas concentrations in the central kiloparsec. The SONG sample also includes 27 galaxies below the CO brightness limit used by Sakamoto et al. Even in these CO-faint galaxies we show that high central gas concentrations are more common in barred galaxies, consistent with radial inflow driven by the bar. However, there is a significant population of early-type (Sa--Sbc) barred spirals (6 of 19) that have little or no molecular gas detected in the nuclear region and out to the bar co-rotation radius. In these galaxies, the bar has already driven most of the gas within the bar to the nuclear region, where it has been consumed by star formation. The median nuclear gas mass is over four times higher in early type bars; since the gas consumption rate is an order of magnitude higher in early type bars, early types must have significantly higher bar-driven inflows. The lower inflow rates in late type bars can be attributed to differences in bar structure between early and late types. Despite bar-driven inflows, the data indicate that it is highly unlikely for a late type galaxy to evolve into an early type via bar-induced gas inflow. Nonetheless, secular evolutionary processes are undoubtedly present, and pseudo-bulges are inevitable; evidence for pseudo-bulges is likely to be clearest in early-type galaxies because of their high gas inflow rates and higher star formation activity (abridged).Comment: Accepted for publication in The Astrophysical Journa

    The formation of CDM haloes I: Collapse thresholds and the ellipsoidal collapse model

    Full text link
    In the excursion set approach to structure formation initially spherical regions of the linear density field collapse to form haloes of mass MM at redshift zidz_{\rm id} if their linearly extrapolated density contrast, averaged on that scale, exceeds some critical threshold, δc(zid)\delta_{\rm c}(z_{\rm id}). The value of δc(zid)\delta_{\rm c}(z_{\rm id}) is often calculated from the spherical or ellipsoidal collapse model, which provide well-defined predictions given auxiliary properties of the tidal field at a given location. We use two cosmological simulations of structure growth in a Λ\Lambda cold dark matter scenario to quantify δc(zid)\delta_{\rm c}(z_{\rm id}), its dependence on the surrounding tidal field, as well as on the shapes of the Lagrangian regions that collapse to form haloes at zidz_{\rm id}. Our results indicate that the ellipsoidal collapse model provides an accurate description of the mean dependence of δc(zid)\delta_{\rm c}(z_{\rm id}) on both the strength of the tidal field and on halo mass. However, for a given zidz_{\rm id}, δc(zid)\delta_{\rm c}(z_{\rm id}) depends strongly on the halo's characteristic formation redshift: the earlier a halo forms, the higher its initial density contrast. Surprisingly, the majority of haloes forming todaytoday fall below the ellipsoidal collapse barrier, contradicting the model predictions. We trace the origin of this effect to the non-spherical shapes of Lagrangian haloes, which arise naturally due to the asymmetry of the linear tidal field. We show that a modified collapse model, that accounts for the triaxial shape of protohaloes, provides a more accurate description of the measured minimum overdensities of recently collapsed objects.Comment: MNRAS in pres

    Diagnostic and therapeutic considerations in idiopathic hypereosinophilia with warm autoimmune hemolytic anemia.

    Get PDF
    Hypereosinophilic syndrome (HES) encompasses numerous diverse conditions resulting in peripheral hypereosinophilia that cannot be explained by hypersensitivity, infection, or atopy and that is not associated with known systemic diseases with specific organ involvement. HES is often attributed to neoplastic or reactive causes, such as chronic eosinophilic leukemia, although a majority of cases remains unexplained and are considered idiopathic. Here, we review the current diagnosis and management of HES and present a unique case of profound hypereosinophilia associated with warm autoimmune hemolytic anemia requiring intensive management. This case clearly illustrates the limitations of current knowledge with respect to hypereosinophilia syndrome as well as the challenges associated with its classification and management

    Early-type galaxies in the SDSS. II. Correlations between observables

    Get PDF
    A magnitude limited sample of nearly 9000 early-type galaxies, in the redshift range 0.01 < z < 0.3, was selected from the Sloan Digital Sky Survey using morphological and spectral criteria. The sample was used to study how early-type galaxy observables, including luminosity L, effective radius R_o, surface brightness I_o, color, and velocity dispersion sigma, are correlated with one another. Measurement biases are understood with mock catalogs which reproduce all of the observed scaling relations and their dependences on fitting technique. At any given redshift, the intrinsic distribution of luminosities, sizes and velocity dispersions in our sample are all approximately Gaussian. A maximum likelihood analysis shows that sigma ~ L^{0.25\pm 0.012}, R_o ~ L^{0.63\pm 0.025}, and R_o ~ I^{-0.75\pm 0.02} in the r* band. In addition, the mass-to-light ratio within the effective radius scales as M_o/L ~ L^{0.14\pm 0.02} or M_o/L ~ M_o^{0.22\pm 0.05}, and galaxies with larger effective masses have smaller effective densities: Delta_o ~ M_o^{-0.52\pm 0.03}. These relations are approximately the same in the g*, i* and z* bands. Relative to the population at the median redshift in the sample, galaxies at lower and higher redshifts have evolved only little, with more evolution in the bluer bands. The luminosity function is consistent with weak passive luminosity evolution and a formation time of about 9 Gyrs ago.Comment: 29 pages, 11 figures. Accepted by AJ (scheduled for April 2003). This paper is part II of a revised version of astro-ph/011034
    corecore