2,856 research outputs found

    Asymptotic Level Density of the Elastic Net Self-Organizing Feature Map

    Full text link
    Whileas the Kohonen Self Organizing Map shows an asymptotic level density following a power law with a magnification exponent 2/3, it would be desired to have an exponent 1 in order to provide optimal mapping in the sense of information theory. In this paper, we study analytically and numerically the magnification behaviour of the Elastic Net algorithm as a model for self-organizing feature maps. In contrast to the Kohonen map the Elastic Net shows no power law, but for onedimensional maps nevertheless the density follows an universal magnification law, i.e. depends on the local stimulus density only and is independent on position and decouples from the stimulus density at other positions.Comment: 8 pages, 10 figures. Link to publisher under http://link.springer.de/link/service/series/0558/bibs/2415/24150939.ht

    The influence of Fusarium infection on wheat (Triticum aestivum L.) proteins distribution and baking quality

    Get PDF
    Under artificial Fusarium infection the total glutenin content determined by chromatographic (RP-HPLC) method was significantly reduced in comparison to gliadins which were increased. Among protein types, α-GLI and HMW-GS were the highest affected. Artificial Fusarium infection significantly increased GLI/GLU ratio when compared with the natural infected samples. Artificial Fusarium infection dramatically decreased the dough mixing tolerance and had a considerable negative effect on dough energy, maximum resistance, and resistance/extensibility ratio. Disturbed GLI/GLU ratio and an increased amount of mycotoxin DON under artificial Fusarium infection showed a strong negative impact on affected functional properties of dough and bread. Total and γ-GLI as well as GLI/GLU ratio were significantly positively affected by mycotoxin DON in contrast to total GLU, HMW-GS and LMW-GS which were negatively affected. Results indicated that the stability of baking quality parameters of cultivars more tolerance to the Fusarium infection can be well define by lower accumulation of mycotoxin DON

    Dimensional structural constants from chiral and conformal bosonization of QCD

    Get PDF
    We derive the dimensional non-perturbative part of the QCD effective action for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of the chiral lagrangian are estimated using general relations which are valid in a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated, and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interaction between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.Comment: 21 pages, LaTe

    Investigation of top mass measurements with the ATLAS detector at LHC

    Full text link
    Several methods for the determination of the mass of the top quark with the ATLAS detector at the LHC are presented. All dominant decay channels of the top quark can be explored. The measurements are in most cases dominated by systematic uncertainties. New methods have been developed to control those related to the detector. The results indicate that a total error on the top mass at the level of 1 GeV should be achievable.Comment: 47 pages, 40 figure

    3D-4D Interlinkage Of qqq Wave Functions Under 3D Support For Pairwise Bethe-Salpeter Kernels

    Get PDF
    Using the method of Green's functions within a Bethe-Salpeter framework characterized by a pairwise qq interaction with a Lorentz-covariant 3D support to its kernel, the 4D BS wave function for a system of 3 identical relativistic spinless quarks is reconstructed from the corresponding 3D form which satisfies a fully connected 3D BSE. This result is a 3-body generalization of a similar 2-body result found earlier under identical conditions of a 3D support to the corresponding qq-bar BS kernel under Covariant Instaneity (CIA for short). (The generalization from spinless to fermion quarks is straightforward). To set the CIA with 3D BS kernel support ansatz in the context of contemporary approaches to the qqq baryon problem, a model scalar 4D qqq BSE with pairwise contact interactions to simulate the NJL-Faddeev equations is worked out fully, and a comparison of both vertex functions shows that the CIA vertex reduces exactly to the NJL form in the limit of zero spatial range. This consistency check on the CIA vertex function is part of a fuller accounting for its mathematical structure whose physical motivation is traceable to the role of `spectroscopy' as an integral part of the dynamics.Comment: 20 pages, Latex, submitted via the account of K.-C. Yan

    Calculation of the Chiral Lagrangian Coefficients from the Underlying Theory of QCD: A Simple Approach

    Full text link
    We calculate the coefficients in the chiral Lagrangian approximately from QCD based on a previous study of deriving the chiral Lagrangian from the first principles of QCD in which the chiral Lagrangian coefficients are defined in terms of certain Green's functions in QCD. We first show that, in the large N(c)-limit, the anomaly part contributions to the coefficients are exactly cancelled by certain terms in the normal part contributions, and the final results of the coefficients only concern the remaining normal part contributions depending on QCD interactions. We then do the calculation in a simple approach with the approximations of taking the large-N(c) limit, the leading order in dynamical perturbation theory, and the improved ladder approximation, thereby the relevant Green's functions are expressed in terms of the quark self energy. By solving the Schwinger-Dyson equation for the quark self energy, we obtain the approximate QCD predicted coefficients and the quark condensate which are consistent with the experimental values.Comment: Further typos corrected, to appear in Phys. Rev.

    Continuity, Deconfinement, and (Super) Yang-Mills Theory

    Full text link
    We study the phase diagram of SU(2) Yang-Mills theory with one adjoint Weyl fermion on R^3xS^1 as a function of the fermion mass m and the compactification scale L. This theory reduces to thermal pure gauge theory as m->infinity and to circle-compactified (non-thermal) supersymmetric gluodynamics in the limit m->0. In the m-L plane, there is a line of center symmetry changing phase transitions. In the limit m->infinity, this transition takes place at L_c=1/T_c, where T_c is the critical temperature of the deconfinement transition in pure Yang-Mills theory. We show that near m=0, the critical compactification scale L_c can be computed using semi-classical methods and that the transition is of second order. This suggests that the deconfining phase transition in pure Yang-Mills theory is continuously connected to a transition that can be studied at weak coupling. The center symmetry changing phase transition arises from the competition of perturbative contributions and monopole-instantons that destabilize the center, and topological molecules (neutral bions) that stabilize the center. The contribution of molecules can be computed using supersymmetry in the limit m=0, and via the Bogomolnyi--Zinn-Justin (BZJ) prescription in the non-supersymmetric gauge theory. Finally, we also give a detailed discussion of an issue that has not received proper attention in the context of N=1 theories---the non-cancellation of nonzero-mode determinants around supersymmetric BPS and KK monopole-instanton backgrounds on R^3xS^1. We explain why the non-cancellation is required for consistency with holomorphy and supersymmetry and perform an explicit calculation of the one-loop determinant ratio.Comment: A discussion of the non-cancellation of the nonzero mode determinants around supersymmetric monopole-instantons in N=1 SYM on R^3xS^1 is added, including an explicit calculation. The non-cancellation is, in fact, required by supersymmetry and holomorphy in order for the affine-Toda superpotential to be reproduced. References have also been adde

    Paracrine delivery of therapeutic biologics for cancer

    Get PDF
    A fundamental goal of cancer drug delivery is to achieve sufficient levels within the tumour without leading to high systemic concentrations that might cause off-target toxicities. In situ production of protein-based therapeutics by tumour cells provides an attractive alternative to treatment with repeated high bolus injections, as secretion by the tumour itself could provide high local concentrations that act in a paracrine fashion over an extended duration. For this purpose, we have developed a non-oncolytic adenoviral delivery system that allows for targeting of Ad5 to discrete cell types by redirecting viral tropism to cell surface biomarkers through the use of interchangeable adapters. Furthermore, we recently described the engineering of a protein-based ‘shield’ that is coated on the Ad5 capsid, which, together with the retargeting adapters, allows for improved tumour specificity and prevention of viral clearance. To test this delivery strategy in vivo, SCID-beige mice bearing orthotopic BT474 xenografts were treated with three doses of either a cancerspecific, non-replicative Ad5 that encodes a secreted anti-HER2 antibody, trastuzumab, in its genome, or with the protein therapeutic itself (Herceptin®). We have employed state-of-the-art whole tumour clearing and imaging with confocal microscopy at high spatial resolution in 3D to assess biodistribution, and large volumetric imaging has revealed that the secreted therapeutic diffuses significantly throughout the tumour leading to a therapeutic effect and delayed tumour outgrowth. Moreover, the systemic concentration of antibody is significantly reduced with viral delivery, suggesting that paracrine delivery may be a promising strategy for delivery of biologics with narrow therapeutic indices
    corecore