3,714 research outputs found

    Modelling solar low-lying cool loops with optically thick radiative losses

    Get PDF
    We investigate the increase of the DEM (differential emission measure) towards the chromosphere due to small and cool magnetic loops (height 8\lesssim8~Mm, T105T\lesssim10^5~K). In a previous paper we analysed the conditions of existence and stability of these loops through hydrodynamic simulations, focusing on their dependence on the details of the optically thin radiative loss function used. In this paper, we extend those hydrodynamic simulations to verify if this class of loops exists and it is stable when using an optically thick radiative loss function. We study two cases: constant background heating and a heating depending on the density. The contribution to the transition region EUV output of these loops is also calculated and presented. We find that stable, quasi-static cool loops can be obtained by using an optically thick radiative loss function and a background heating depending on the density. The DEMs of these loops, however, fail to reproduce the observed DEM for temperatures between 4.6<logT<4.84.6<\log T<4.8. We also show the transient phase of a dynamic loop obtained by considering constant heating rate and find that its average DEM, interpreted as a set of evolving dynamic loops, reproduces quite well the observed DEM.Comment: Accepted for publication in A&A on Aug 21st 2015. arXiv admin note: text overlap with arXiv:1112.030

    Surface-enhanced Raman spectroscopy in 3D electrospun nanofiber mats coated with gold nanorods

    Full text link
    Nanofibers functionalized by metal nanostructures and particles are exploited as effective flexible substrates for SERS analysis. Their complex three-dimensional structure may provide Raman signals enhanced by orders of magnitude compared to untextured surfaces. Understanding the origin of such improved performances is therefore very important for pushing nanofiber-based analytical technologies to their upper limit. Here we report on polymer nanofiber mats which can be exploited as substrates for enhancing the Raman spectra of adsorbed probe molecules. The increased surface area and the scattering of light in the nanofibrous system are individually analyzed as mechanisms to enhance Raman scattering. The deposition of gold nanorods on the fibers further amplifies Raman signals due to SERS. This study suggests that Raman signals can be finely tuned in intensity and effectively enhanced in nanofiber mats and arrays by properly tailoring the architecture, composition, and light-scattering properties of the complex networks of filaments.Comment: 29 pages, 9 figures, 1 Tabl

    Signatures of impulsive localized heating in the temperature distribution of multi-stranded coronal loops

    Full text link
    We study the signatures of different coronal heating regimes on the differential emission measure (DEM) of multi-stranded coronal loops by means of hydrodynamic simulations. We consider heating either uniformly distributed along the loops or localized close to the chromospheric footpoints, in both steady and impulsive conditions. Our simulations show that condensation at the top of the loop forms when the localized heating is impulsive with a pulse cadence time shorter than the plasma cooling time, and the pulse energy is below a certain threshold. A condensation does not produce observable signatures in the global DEM structure. Conversely, the DEM coronal peak is found sensitive to the pulse cadence time. Our simulations can also give an explanation of the warm overdense and hot underdense loops observed by TRACE, SOHO and Yohkoh. However, they are unable to reproduce both the transition region and the coronal DEM structure with a unique set of parameters, which outlines the need for a more realistic description of the transition region.Comment: 31 pages, 7 figure

    DELAMINAZIONE INTERLAMINARE DI COMPOSITI CFRP AL VARIARE DELLE CONDIZIONI DI CURA DELLA MATRICE

    Get PDF
    In questo lavoro si è condotto uno studio sperimentale del comportamento a delaminazione interlaminare in Modo I di laminati compositi unidirezionali in fibra di carbonio e matrice epossidica (CFRP), al variare delle condizioni di cura della matrice. Tutti i sistemi analizzati hanno utilizzato lo stesso tessuto e lo stesso monomero epossidico DGEBA. Variando il processo di cura (cura termica o mediante radiazioni), gli agenti di cura (ammine o anidridi per i sistemi curati termicamente), e l’impiego di additivi tenacizzanti (es. il PES per i sistemi irradiati), è stato possibile controllare e modificare sia il grado di adesione fibra/matrice, che il grado di fragilità della matrice (monitorato attraverso il Fattore Critico di Intensificazione degli Sforzi KIC). Il lavoro quindi propone una analisi critica dei meccanismi di resistenza alla delaminazione controllati dalla tenacità della matrice e dalla resistenza dell’interfaccia fibra-matrice, mediante la determinazione delle Curve di Resistenza e dei valori di GIC di Innesco e di Propagazione ottenuti per i diversi sistemi presi in esame

    Studies of network organization and dynamics of e-beam crosslinked PVPs: From macro to nano

    Get PDF
    In this work the influence of poly(N-vinylpyrrolidone)(PVP)concentration in water on the organization and dynamics of the corresponding macro-/nanogel networks has been systematically investigated. Irradiation has been performed at the same irradiation dose(within the sterilization dose range)and dose rate. In the selected irradiation conditions, the transition between macroscopic gelation and micro/nanogels formation is observed just below the critical overlap concentration(1 wt%),whereas the net prevalence of intramolecular over intermolecular crosslinking occurs at a lower polymer concentration(below 0.25 wt%). Dynamic\u2013mechanical spectroscopy has been applied as a classical methodology to estimate the network mesh size for macrogels in their swollen state, while 13C NMR spin\u2013lattice relaxation spectroscopy has been applied on both the macrogel and nanogel freeze dried residues to withdraw interesting information of the network spatial organization in the passage of scale from macrotonano

    Health effects of adopting low greenhouse gas emission diets in the UK.

    Get PDF
    OBJECTIVE: Dietary changes which improve health are also likely to be beneficial for the environment by reducing emissions of greenhouse gases (GHG). However, previous analyses have not accounted for the potential acceptability of low GHG diets to the general public. This study attempted to quantify the health effects associated with adopting low GHG emission diets in the UK. DESIGN: Epidemiological modelling study. SETTING: UK. PARTICIPANTS: UK population. INTERVENTION: Adoption of diets optimised to achieve the WHO nutritional recommendations and reduce GHG emissions while remaining as close as possible to existing dietary patterns. MAIN OUTCOME: Changes in years of life lost due to coronary heart disease, stroke, several cancers and type II diabetes, quantified using life tables. RESULTS: If the average UK dietary intake were optimised to comply with the WHO recommendations, we estimate an incidental reduction of 17% in GHG emissions. Such a dietary pattern would be broadly similar to the current UK average. Our model suggests that it would save almost 7 million years of life lost prematurely in the UK over the next 30 years and increase average life expectancy by over 8 months. Diets that result in additional GHG emission reductions could achieve further net health benefits. For emission reductions greater than 40%, improvements in some health outcomes may decrease and acceptability will diminish. CONCLUSIONS: There are large potential benefits to health from adopting diets with lower associated GHG emissions in the UK. Most of these benefits can be achieved without drastic changes to existing dietary patterns. However, to reduce emissions by more than 40%, major dietary changes that limit both acceptability and the benefits to health are required

    The durability of carbon fiber/epoxy composites under hydrothermal ageing

    Get PDF
    Studies on fibre reinforced composites are now receiving greater attention. Industrial applications have been successful in areas like aerospace, automobile, marine, construction and sporting goods. The first generation of epoxy resins for use in carbon fibre composites are able to achieve optimized high stiffness modules and high heat resistance by a high crosslink density, reached through thermal curing. However, these formulations can be very toxic and brittle with low crack resistance, which was a major disadvantage for structural applications. In the last years the use of ionizing radiation as alternative to thermal curing has been proposed as an environmentally friendly process. Furthermore, in order to enhance toughness mechanical requirements for their applications, the formulation generally consists of blends of epoxy resins and engineering thermoplastics. In terms of durability (service life and reliability), in these materials it depends on different environmental conditions (temperature, moisture, etc.), and it is very important to know how their properties are modified after the exposure to different temperature and moisture absorption cycles. In this work carbon fibre composites produced by ionizing radiation induced curing of the epoxy based matrices have been subjected to thermal and moisture absorption ageing and the influence of these treatments on the thermal and mechanical properties has been investigated through dynamic mechanical thermal analysis and mechanical fracture toughness tests

    A solar active region loop compared with a 2D MHD model

    Full text link
    We analyzed a coronal loop observed with the Normal Incidence Spectrometer (NIS), which is part of the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO). The measured Doppler shifts and proper motions along the selected loop strongly indicate unidirectional flows. Analysing the Emission Measure Curves of the observed spectral lines, we estimated that the temperature along the loop was about 380000 K. We adapted a solution of the ideal MHD steady equations to our set of measurements. The derived energy balance along the loop, as well as the advantages/disadvantages of this MHD model for understanding the characteristics of solar coronal loops are discussed.Comment: A&A in press, 10 pages, 6 figure
    corecore