1,751 research outputs found
Bi-spectral beam extraction in combination with a focusing feeder
Bi-spectral beam extraction combines neutrons from two different kind of
moderators into one beamline, expanding the spectral range and thereby the
utilization of an instrument. This idea can be realized by a mirror that
reflects long wavelength neutrons from an off-axis colder moderator into a
neutron guide aligned with another moderator emitting neutrons with shorter
wavelengths which will be transmitted through the mirror. The mirror used in
such systems is typically several meters long, which is a severe disadvantage
because it reduces the possible length of a focusing device in design concepts
requiring a narrow beam at a short distance from the source, as used in many
instruments under development for the planned European Spallation Source (ESS).
We propose a shortened extraction system consisting of several mirrors, and
show that such an extraction system is better suited for combination with a
feeder in an eye of the needle design, illustrated here in the context of a
possible ESS imaging beamline.Comment: Published in Nuclear Instruments and Methods in Physics Research,
Section
Explicit Global Coordinates for Schwarzschild and Reissner-Nordstroem
We construct coordinate systems that cover all of the Reissner-Nordstroem
solution with m>|q| and m=|q|, respectively. This is possible by means of
elementary analytical functions. The limit of vanishing charge q provides an
alternative to Kruskal which, to our mind, is more explicit and simpler. The
main tool for finding these global charts is the description of highly
symmetrical metrics by two-dimensional actions. Careful gauge fixing yields
global representatives of the two-dimensional theory that can be rewritten
easily as the corresponding four-dimensional line elements.Comment: 12 pages, 3 Postscript figures, sign error in Eq. (37) and below
corrected, references and Note added; to appear in Class. Quantum Gra
Symplectic Cuts and Projection Quantization
The recently proposed projection quantization, which is a method to quantize
particular subspaces of systems with known quantum theory, is shown to yield a
genuine quantization in several cases. This may be inferred from exact results
established within symplectic cutting.Comment: 12 pages, v2: additional examples and a new reference to related wor
Group Theoretical Quantization and the Example of a Phase Space
The group theoretical quantization scheme is reconsidered by means of elementary systems. Already the quantization of a particle on a circle shows that the standard procedure has to be supplemented by an additional condition on the admissibility of group actions. A systematic strategy for finding admissible group actions for particular subbundles of cotangent spaces is developed, two-dimensional prototypes of which are T^*R^+ and S^1 x R^+ (interpreted as restrictions of T^*R and T^*S^1 to positive coordinate and momentum, respectively). In this framework (and under an additional, natural condition) an SO_+(1,2)-action on S^1 x R^+ results as the unique admissible group action. For symplectic manifolds which are (specific) parts of phase spaces with known quantum theory a simple projection method of quantization is formulated. For T^*R^+ and S^1 x R^+ equivalent results to those of more established (but more involved) quantization schemes are obtained. The approach may be of interest, e.g., in attempts to quantize gravity theories where demanding nondegenerate metrics of a fixed signature imposes similar constraints
Design of a horizontal neutron reflectometer for the European Spallation Source
A design study of a horizontal neutron reflectometer adapted to the general
baseline of the long pulse European Spallation Source (ESS) is presented. The
instrument layout comprises solutions for the neutron guide, high-resolution
pulse shaping and beam bending onto a sample surface being so far unique in the
field of reflectometry. The length of this instrument is roughly 55 m, enabling
resolutions from 0.5% to 10%. The incident beam is
focussed in horizontal plane to boost measurements of sample sizes of 1*1
cm{^2} and smaller with potential beam deflection in both downward and upward
direction. The range of neutron wavelengths untilized by the instrument is 2 to
7.1 (12.2, ...) {\AA}, if every (second, ...) neutron source ulse is used.
Angles of incidence can be set between 0{\deg} and 9{\deg} with a total
accessible q-range from 4*10^{-3} {\AA}^{-1} up to 1 {\AA}^{-1}. The instrument
operates both in {\theta}/{\theta} (free liquid surfaces) and
{\theta}/2{\theta} (solid/liquid, air/solid interfaces) geometry. The
experimental setup will in particular enable direct studies on ultrathin films
(d ~ 10 {\AA}) and buried monolayers to multilayered structures of up to 3000
{\AA} total thickness. The horizontal reflectometer will further foster
investigations of hierarchical systems from nanometer to micrometer length
scale, as well as their kinetics and dynamical properties, in particular under
load (shear, pressure, external fields). Polarization and polarization analysis
as well as the GISANS option are designed as potential modules to be
implemented separately in the generic instrument layout. The instrument is
highly flexible and offers a variety of different measurement modes. With
respect to its mechanical components the instrument is exclusively based on
current technology. Risks of failure for the chosen setup are minimum.Comment: Matched to the version submitted to Nuclear Instruments and Methods
Transition from accelerated to decelerated regimes in JT and CGHS cosmologies
In this work we discuss the possibility of positive-acceleration regimes, and
their transition to decelerated regimes, in two-dimensional (2D) cosmological
models. We use general relativity and the thermodynamics in a 2D space-time,
where the gas is seen as the sources of the gravitational field. An
early-Universe model is analyzed where the state equation of van der Waals is
used, replacing the usual barotropic equation. We show that this substitution
permits the simulation of a period of inflation, followed by a
negative-acceleration era. The dynamical behavior of the system follows from
the solution of the Jackiw-Teitelboim equations (JT equations) and the
energy-momentum conservation laws. In a second stage we focus the
Callan-Giddings-Harvey-Strominger model (CGHS model); here the transition from
the inflationary period to the decelerated period is also present between the
solutions, although this result depend strongly on the initial conditions used
for the dilaton field. The temporal evolution of the cosmic scale function, its
acceleration, the energy density and the hydrostatic pressure are the physical
quantities obtained in through the analysis.Comment: To appear in Europhysics Letter
String-Inspired Gravity Coupled to Yang-Mills Fields
String-inspired 1+1-dimensional gravity is coupled to Yang-Mills fields in
the Cangemi-Jackiw gauge-theoretical formulation, based on the extended
Poincar\'e group. A family of couplings, which involves metrics obtainable from
the physical metric with a conformal rescaling, is considered, and the
resulting family of models is investigated both at the classical and the
quantum level. In particular, also using a series of Kirillov-Kostant phases,
the wave functionals that solve the constraints are identified.Comment: 15 pages, LaTex
Classical and Quantum Gravity in 1+1 Dimensions, Part I: A Unifying Approach
We provide a concise approach to generalized dilaton theories with and
without torsion and coupling to Yang-Mills fields. Transformations on the space
of fields are used to trivialize the field equations locally. In this way their
solution becomes accessible within a few lines of calculation only. In this
first of a series of papers we set the stage for a thorough global
investigation of classical and quantum aspects of more or less all available 2D
gravity-Yang-Mills models.Comment: 24 pages, no figures, some sign errors in Eqs. 52--59 have been
corrected (according to the Erratum
Classical and Quantum Integrability of 2D Dilaton Gravities in Euclidean space
Euclidean dilaton gravity in two dimensions is studied exploiting its
representation as a complexified first order gravity model. All local classical
solutions are obtained. A global discussion reveals that for a given model only
a restricted class of topologies is consistent with the metric and the dilaton.
A particular case of string motivated Liouville gravity is studied in detail.
Path integral quantisation in generic Euclidean dilaton gravity is performed
non-perturbatively by analogy to the Minkowskian case.Comment: 27 p., LaTeX, v2: included new refs. and a footnot
On the Canonical Reduction of Spherically Symmetric Gravity
In a thorough paper Kuchar has examined the canonical reduction of the most
general action functional describing the geometrodynamics of the maximally
extended Schwarzschild geometry. This reduction yields the true degrees of
freedom for (vacuum) spherically symmetric general relativity. The essential
technical ingredient in Kuchar's analysis is a canonical transformation to a
certain chart on the gravitational phase space which features the Schwarzschild
mass parameter , expressed in terms of what are essentially
Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we
discuss the geometric interpretation of Kuchar's canonical transformation in
terms of the theory of quasilocal energy-momentum in general relativity given
by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent
boost to the rest frame," where the ``rest frame'' is defined by vanishing
quasilocal momentum. Furthermore, our formalism is general enough to cover the
case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing
Kucha\v{r}'s original work for Schwarzschild black holes from the framework of
hyperbolic geometry, we present new results concerning the canonical reduction
of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure
- …
