222 research outputs found

    Antibubbles and fine cylindrical sheets of air

    Get PDF
    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures

    Targeted hepatitis C antibody testing interventions: a systematic review and meta-analysis

    Get PDF
    Testing for hepatitis C virus (HCV) infection may reduce the risk of liver-related morbidity, by facilitating earlier access to treatment and care. This review investigated the effectiveness of targeted testing interventions on HCV case detection, treatment uptake, and prevention of liver-related morbidity. A literature search identified studies published up to 2013 that compared a targeted HCV testing intervention (targeting individuals or groups at increased risk of HCV) with no targeted intervention, and results were synthesised using meta-analysis. Exposure to a targeted testing intervention, compared to no targeted intervention, was associated with increased cases detected [number of studies (n) = 14; pooled relative risk (RR) 1.7, 95 % CI 1.3, 2.2] and patients commencing therapy (n = 4; RR 3.3, 95 % CI 1.1, 10.0). Practitioner-based interventions increased test uptake and cases detected (n = 12; RR 3.5, 95 % CI 2.5, 4.8; and n = 10; RR 2.2, 95 % CI 1.4, 3.5, respectively), whereas media/information-based interventions were less effective (n = 4; RR 1.5, 95 % CI 0.7, 3.0; and n = 4; RR 1.3, 95 % CI 1.0, 1.6, respectively). This meta-analysis provides for the first time a quantitative assessment of targeted HCV testing interventions, demonstrating that these strategies were effective in diagnosing cases and increasing treatment uptake. Strategies involving practitioner-based interventions yielded the most favourable outcomes. It is recommended that testing should be targeted at and offered to individuals who are part of a population with high HCV prevalence, or who have a history of HCV risk behaviour

    Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    Get PDF
    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ∼100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained “anchored” to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.We thank Galápagos National Park authorities and CDRS for permitting fieldwork in Galápagos. D. Villagomez and D. Toomey generously shared their extensive seismic data set for Galápagos, and D. McKenzie kindly provided help with temperature calculations. End-member compositions of Galápagos mantle reservoirs in Figure 4 were estimated from principal component analysis; data related to these calculations are available in the supporting information. We are grateful to Kaj Hoernle and two anonymous reviewers for their constructive comments on an earlier version of this manuscript. The research was funded by the University of Cambridge, Geological Society of London, NERC (RG57434), and NSF (EAR 0838461, EAR 0944229, and EAR-11452711).This is the final published version of the article. It first appeared at http://dx.doi.org/10.1002/2015GC00572

    Antibubbles and fine cylindrical sheets of air

    Get PDF

    Tackling functional redundancy of Arabidopsis fatty acid elongase complexes

    Get PDF
    Very-long-chain fatty acids (VLCFA) are precursors for various lipids playing important physiological and structural roles in plants. Throughout plant tissues, VLCFA are present in multiple lipid classes essential for membrane homeostasis, and also stored in triacylglycerols. VLCFA and their derivatives are also highly abundant in lipid barriers, such as cuticular waxes in aerial epidermal cells and suberin monomers in roots. VLCFA are produced by the fatty acid elongase (FAE), which is an integral endoplasmic reticulum membrane multi-enzymatic complex consisting of four core enzymes. The 3-ketoacyl-CoA synthase (KCS) catalyzes the first reaction of the elongation and determines the chain-length substrate specificity of each elongation cycle, whereas the other three enzymes have broad substrate specificities and are shared by all FAE complexes. Consistent with the co-existence of multiple FAE complexes, performing sequential and/or parallel reactions to produce the broad chain-length-range of VLCFA found in plants, twenty-one KCS genes have been identified in the genome of Arabidopsis thaliana. Using CRISPR-Cas9 technology, we established an expression platform to reconstitute the different Arabidopsis FAE complexes in yeast. The VLCFA produced in these yeast strains were analyzed in detail to characterize the substrate specificity of all KCS candidates. Additionally, Arabidopsis candidate proteins were transiently expressed in Nicotiana benthamiana leaves to explore their activity and localization in planta. This work sheds light on the genetic and biochemical redundancy of fatty acid elongation in plants

    On the analysis of the contact angle for impacting droplets using a polynomial fitting approach

    Get PDF
    ractical considerations on the measurement of the dynamic contact angle and the spreading diameter of impacting droplets are discussed in this paper. The contact angle of a liquid is commonly obtained either by a polynomial or a linear fitting to the droplet profile around the triple phase point. Previous works have focused on quasi-static or sessile droplets, or in cases where inertia does not play a major role on the contact angle dynamics. Here, we study the effect of droplet shape, the order of the fitting polynomial, and the fitting domain, on the measurement of the contact angle on various stages following droplet impact where the contact line is moving. Our results, presented in terms of the optical resolution and the droplet size, show that a quadratic fitting provides the most consistent results for a range of various droplet shapes. As expected, our results show that contact angle values are less sensitive to the fitting conditions for the cases where the droplet can be approximated to a spherical cap. Our experimental conditions include impact events with liquid droplets of different sizes and viscosities on various substrates. In addition, validating past works, our results show that the maximum spreading diameter can be parameterised by the Weber number and the rapidly advancing contact angle

    Mutation Rate Switch inside Eurasian Mitochondrial Haplogroups: Impact of Selection and Consequences for Dating Settlement in Europe

    Get PDF
    R-lineage mitochondrial DNA represents over 90% of the European population and is significantly present all around the planet (North Africa, Asia, Oceania, and America). This lineage played a major role in migration “out of Africa” and colonization in Europe. In order to determine an accurate dating of the R lineage and its sublineages, we analyzed 1173 individuals and complete mtDNA sequences from Mitomap. This analysis revealed a new coalescence age for R at 54.500 years, as well as several limitations of standard dating methods, likely to lead to false interpretations. These findings highlight the association of a striking under-accumulation of synonymous mutations, an over-accumulation of non-synonymous mutations, and the phenotypic effect on haplogroup J. Consequently, haplogroup J is apparently not a Neolithic group but an older haplogroup (Paleolithic) that was subjected to an underestimated selective force. These findings also indicated an under-accumulation of synonymous and non-synonymous mutations localized on coding and non-coding (HVS1) sequences for haplogroup R0, which contains the major haplogroups H and V. These new dates are likely to impact the present colonization model for Europe and confirm the late glacial resettlement scenario

    OPA1-related dominant optic atrophy is not strongly influenced by mitochondrial DNA background

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leber's hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) are the most frequent forms of hereditary optic neuropathies. LHON is associated with mitochondrial DNA (mtDNA) mutations whereas ADOA is mainly due to mutations in the OPA1 gene that encodes a mitochondrial protein involved in the mitochondrial inner membrane remodeling. A striking influence of mtDNA haplogroup J on LHON expression has been demonstrated and it has been recently suggested that this haplogroup could also influence ADOA expression. In this study, we have tested the influence of mtDNA backgrounds on OPA1 mutations.</p> <p>Methods</p> <p>To define the relationships between OPA1 mutations and mtDNA backgrounds, we determined the haplogroup affiliation of 41 French patients affected by OPA1-related ADOA by control-region sequencing and RFLP survey of their mtDNAs.</p> <p>Results</p> <p>The comparison between patient and reference populations did not revealed any significant difference.</p> <p>Conclusion</p> <p>Our results argue against a strong influence of mtDNA background on ADOA expression. These data allow to conclude that OPA1 could be considered as a "severe mutation", directly responsible of the optic atrophy, whereas OPA1-negative ADOA and LHON mutations need an external factor(s) to express the pathology (i.e. synergistic interaction with mitochondrial background).</p

    Hypermethylation of genomic 3.3-kb repeats is frequent event in HPV-positive cervical cancer

    Get PDF
    Background: Large-scale screening methods are widely used to reveal cancer-specific DNA methylation markers. We previously identified non-satellite 3.3-kb repeats associated with facioscapulohumeral muscular dystrophy (FSHD) as hypermethylated in cervical cancer in genome-wide screening. To determine whether hypermethylation of 3.3-kb repeats is a tumor-specific event and to evaluate frequency of this event in tumors, we investigated the 3.3-kb repeat methylation status in human papilloma virus (HPV)-positive cervical tumors, cancer cell lines, and normal cervical tissues. Open reading frames encoding DUX family proteins are contained within some 3.3-kb repeat units. The DUX mRNA expression profile was also studied in these tissues. Methods: The methylation status of 3.3-kb repeats was evaluated by Southern blot hybridization and bisulfite genomic sequencing. The expression of DUX mRNA was analyzed by RT-PCR and specificity of PCR products was confirmed by sequencing analysis. Results: Hypermethylation of 3.3-kb repeats relative to normal tissues was revealed for the first time in more than 50% (18/34) of cervical tumors and in 4 HPV-positive cervical cancer cell lines. Hypermethylation of 3.3-kb repeats was observed in tumors concurrently with or independently of hypomethylation of classical satellite 2 sequences (Sat2) that were hypomethylated in 75% (15/20) of cervical tumors. We have revealed the presence of transcripts highly homologous to DUX4 and DUX10 genes in normal tissues and down-regulation of transcripts in 68% of tumors with and without 3.3-kb repeats hypermethylation. Conclusion: Our results demonstrate that hypermethylation rather than hypomethylation of 3.3-kb repeats is the predominant event in HPV-associated cervical cancer and provide new insight into the epigenetic changes of repetitive DNA elements in carcinogenesis
    corecore