3,060 research outputs found

    Non-destructive evaluation of cement-based materials from pressure-stimulated electrical emission - Preliminary results

    Get PDF
    This is the post-print version of the final paper published in Construction and Building Materials. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper introduces the possibility of in situ assessment of loading and remaining strength in concrete structures by means of measuring discharge of electric current from loaded specimens. The paper demonstrates that the techniques have been applied to other rock-like materials, but that for the first time they are applied to cement-based materials and a theoretical model is proposed in relation to the appearance of electrical signals during sample loading and up to fracture. A series of laboratory experiments on cement mortar specimens in simple uniaxial compression, and subsequently in bending – hence displaying both tension and compression – are described and show clear correlations between resulting strains and currents measured. Under uniaxial loading there is a well-defined relationship between the pressure-stimulated current (PSC) as a result of a monotonic mechanical loading regime. Similar results are observed in the three-point bending tests where a range of loading regimes is studied, including stepped changes in loading. While currents can be measured at low strains, best results seem to be obtained when strains approach and exceed yield stress values. This technique clearly has immense potential for structural health monitoring of cement-based structures. Both intermittent and continuous monitoring becomes possible, and given an ongoing campaign of monitoring, remaining strength can be estimated

    Piezo stimulated currents in marble samples: precursory and concurrent-with-failure signals

    No full text
    International audienceThe Earth?s electric field transient variations are promising candidates of earthquake precursors. In order to study the physical mechanisms of such precursory signals, laboratory experiments of uniaxial compression were carried out. More specifically the behaviour of stressed marble samples from Penteli Mountain was investigated. The samples were subjected to a time-varying uniaxial compression at both variable and constant stress rates. During the first set of experiments weak electric currents were detected during pressure variations. Such Piezo Stimulated Currents (PSC) were detected while stress steps, both positive and negative were applied, the maximum stress never being greater than the elasticity limit. During the second set of experiments stress was applied at a constant rate starting from zero-stress and ending in fracture. In the region beyond the elastic limit a PSC was detected which after reaching a peak suffered a reversal in its polarity just before fracture. In a third set of experiments the same procedure was applied to previously structurally damaged samples taking care not to fracture them. In all cases the PSC followed the variation of stress and moreover it was observed that a linear relationship existed between the PSC maxima and the corresponding stress-rate maxima. The mechanism responsible for the described phenomena can be ascribed to the Moving Charged Dislocations model

    Pressure stimulated currents in rocks and their correlation with mechanical properties

    Get PDF
    The spontaneous electrification of marble samples was studied while they were subjected to uniaxial stress. The Pressure Stimulated Current (PSC) technique was applied to measure the charge released from compressed Dionysos marble samples, while they were subjected to cyclic loading. The experimental results demonstrate that, in the linear elastic region of the sample, no PSC is recorded, while beyond the stress limit (s>0.60), observable variations appear, which increase considerably in the vicinity of sample failure, reaching a maximum value just before the failure. The emitted current is reduced on each loading cycle and it has a reciprocal dependence to the normalized Young modulus. The MCD model, applied out of the vicinity of sample failure explains successfully the above findings. The existence of a "memory-like" behavior of the sample, could justify the weakness or absence of electrical earthquake precursors, during an aftershock sequence

    Wavelet analysis on pressure stimulated currents emitted by marble samples

    No full text
    International audienceThis paper presents a wavelet based method of analysis of experimentally recorded weak electric signals from marble specimens which have undergone successive abrupt step loadings. Experimental results verify the existence of "memory effects" in rocks, as far as the current emission is concerned, akin to the "Kaiser effect" in acoustic emissions, which accompany rock fracturing. Macroscopic signal processing shows similarities and differences between the currents emitted during successive loading and wavelet analysis can reveal significant differences between the currents of each loading cycle that contain valuable information for the micro and macro cracks in the specimen as well as information for the remaining strength of the material. Wavelets make possible the time localization of the energy of the electric signal emitted by stressed specimens and can serve as method to differentiate between compressed and uncompressed samples, or to determine the deformation level of specimens

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered
    corecore