1,666 research outputs found
Sparsity and Incoherence in Compressive Sampling
We consider the problem of reconstructing a sparse signal from a
limited number of linear measurements. Given randomly selected samples of
, where is an orthonormal matrix, we show that minimization
recovers exactly when the number of measurements exceeds where is the number of
nonzero components in , and is the largest entry in properly
normalized: . The smaller ,
the fewer samples needed.
The result holds for ``most'' sparse signals supported on a fixed (but
arbitrary) set . Given , if the sign of for each nonzero entry on
and the observed values of are drawn at random, the signal is
recovered with overwhelming probability. Moreover, there is a sense in which
this is nearly optimal since any method succeeding with the same probability
would require just about this many samples
On Verifiable Sufficient Conditions for Sparse Signal Recovery via Minimization
We propose novel necessary and sufficient conditions for a sensing matrix to
be "-good" - to allow for exact -recovery of sparse signals with
nonzero entries when no measurement noise is present. Then we express the error
bounds for imperfect -recovery (nonzero measurement noise, nearly
-sparse signal, near-optimal solution of the optimization problem yielding
the -recovery) in terms of the characteristics underlying these
conditions. Further, we demonstrate (and this is the principal result of the
paper) that these characteristics, although difficult to evaluate, lead to
verifiable sufficient conditions for exact sparse -recovery and to
efficiently computable upper bounds on those for which a given sensing
matrix is -good. We establish also instructive links between our approach
and the basic concepts of the Compressed Sensing theory, like Restricted
Isometry or Restricted Eigenvalue properties
User-friendly tail bounds for sums of random matrices
This paper presents new probability inequalities for sums of independent,
random, self-adjoint matrices. These results place simple and easily verifiable
hypotheses on the summands, and they deliver strong conclusions about the
large-deviation behavior of the maximum eigenvalue of the sum. Tail bounds for
the norm of a sum of random rectangular matrices follow as an immediate
corollary. The proof techniques also yield some information about matrix-valued
martingales.
In other words, this paper provides noncommutative generalizations of the
classical bounds associated with the names Azuma, Bennett, Bernstein, Chernoff,
Hoeffding, and McDiarmid. The matrix inequalities promise the same diversity of
application, ease of use, and strength of conclusion that have made the scalar
inequalities so valuable.Comment: Current paper is the version of record. The material on Freedman's
inequality has been moved to a separate note; other martingale bounds are
described in Caltech ACM Report 2011-0
Compressed sensing for wide-field radio interferometric imaging
For the next generation of radio interferometric telescopes it is of
paramount importance to incorporate wide field-of-view (WFOV) considerations in
interferometric imaging, otherwise the fidelity of reconstructed images will
suffer greatly. We extend compressed sensing techniques for interferometric
imaging to a WFOV and recover images in the spherical coordinate space in which
they naturally live, eliminating any distorting projection. The effectiveness
of the spread spectrum phenomenon, highlighted recently by one of the authors,
is enhanced when going to a WFOV, while sparsity is promoted by recovering
images directly on the sphere. Both of these properties act to improve the
quality of reconstructed interferometric images. We quantify the performance of
compressed sensing reconstruction techniques through simulations, highlighting
the superior reconstruction quality achieved by recovering interferometric
images directly on the sphere rather than the plane.Comment: 15 pages, 8 figures, replaced to match version accepted by MNRA
On the shopfloor: exploring the impact of teacher trade unions on school-based industrial relations
Teachers are highly unionised workers and their trade unions exert an important influence on the shaping and implementation of educational policy. Despite this importance there is relatively little analysis of the impact of teacher trade unions in educational management literature. Very little empirical research has sought to establish the impact of teacher unions at school level. In an era of devolved management and quasi-markets this omission is significant. New personnel issues continue to emerge at school level and this may well generate increased trade union activity at the workplace. This article explores the extent to which devolved management is drawing school-based union representation into a more prominent role. It argues that whilst there can be significant differences between individual schools, increased school autonomy is raising the profile of trade union activity in the workplace, and this needs to be better reflected in educational management research
Restricted Isometries for Partial Random Circulant Matrices
In the theory of compressed sensing, restricted isometry analysis has become
a standard tool for studying how efficiently a measurement matrix acquires
information about sparse and compressible signals. Many recovery algorithms are
known to succeed when the restricted isometry constants of the sampling matrix
are small. Many potential applications of compressed sensing involve a
data-acquisition process that proceeds by convolution with a random pulse
followed by (nonrandom) subsampling. At present, the theoretical analysis of
this measurement technique is lacking. This paper demonstrates that the th
order restricted isometry constant is small when the number of samples
satisfies , where is the length of the pulse.
This bound improves on previous estimates, which exhibit quadratic scaling
Ethnic In-Group Favoritism Among Minority and Majority Groups: Testing the Self-Esteem Hypothesis Among Preadolescents
The self-esteem hypothesis in intergroup relations, as proposed by social identity
theory (SIT), states that successful intergroup discrimination enhances momentary
collective self-esteem. This hypothesis is a source of continuing controversy. Furthermore,
although SIT is increasingly used to account for children’s group attitudes,
few studies have examined the hypothesis among children. In addition, the
hypothesis’s generality makes it important to study among children from different
ethnic groups. The present study, conducted among Dutch and Turkish preadolescents,
examined momentary collective self-feelings as a consequence of ethnic group
evaluations. The results tended to support the self-esteem hypothesis. In-group
favoritism was found to have a self-enhancing effect among participants high in
ethnic identification. This result was found for ethnic majority (Dutch) and minority
(Turkish) participants.
Structured Sparsity: Discrete and Convex approaches
Compressive sensing (CS) exploits sparsity to recover sparse or compressible
signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity
is also used to enhance interpretability in machine learning and statistics
applications: While the ambient dimension is vast in modern data analysis
problems, the relevant information therein typically resides in a much lower
dimensional space. However, many solutions proposed nowadays do not leverage
the true underlying structure. Recent results in CS extend the simple sparsity
idea to more sophisticated {\em structured} sparsity models, which describe the
interdependency between the nonzero components of a signal, allowing to
increase the interpretability of the results and lead to better recovery
performance. In order to better understand the impact of structured sparsity,
in this chapter we analyze the connections between the discrete models and
their convex relaxations, highlighting their relative advantages. We start with
the general group sparse model and then elaborate on two important special
cases: the dispersive and the hierarchical models. For each, we present the
models in their discrete nature, discuss how to solve the ensuing discrete
problems and then describe convex relaxations. We also consider more general
structures as defined by set functions and present their convex proxies.
Further, we discuss efficient optimization solutions for structured sparsity
problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure
Low Complexity Regularization of Linear Inverse Problems
Inverse problems and regularization theory is a central theme in contemporary
signal processing, where the goal is to reconstruct an unknown signal from
partial indirect, and possibly noisy, measurements of it. A now standard method
for recovering the unknown signal is to solve a convex optimization problem
that enforces some prior knowledge about its structure. This has proved
efficient in many problems routinely encountered in imaging sciences,
statistics and machine learning. This chapter delivers a review of recent
advances in the field where the regularization prior promotes solutions
conforming to some notion of simplicity/low-complexity. These priors encompass
as popular examples sparsity and group sparsity (to capture the compressibility
of natural signals and images), total variation and analysis sparsity (to
promote piecewise regularity), and low-rank (as natural extension of sparsity
to matrix-valued data). Our aim is to provide a unified treatment of all these
regularizations under a single umbrella, namely the theory of partial
smoothness. This framework is very general and accommodates all low-complexity
regularizers just mentioned, as well as many others. Partial smoothness turns
out to be the canonical way to encode low-dimensional models that can be linear
spaces or more general smooth manifolds. This review is intended to serve as a
one stop shop toward the understanding of the theoretical properties of the
so-regularized solutions. It covers a large spectrum including: (i) recovery
guarantees and stability to noise, both in terms of -stability and
model (manifold) identification; (ii) sensitivity analysis to perturbations of
the parameters involved (in particular the observations), with applications to
unbiased risk estimation ; (iii) convergence properties of the forward-backward
proximal splitting scheme, that is particularly well suited to solve the
corresponding large-scale regularized optimization problem
- …
