7,880 research outputs found

    Spatial calibration of a 2D/3D ultrasound using a tracked needle

    Get PDF
    PURPOSE: Spatial calibration between a 2D/3D ultrasound and a pose tracking system requires a complex and time-consuming procedure. Simplifying this procedure without compromising the calibration accuracy is still a challenging problem. METHOD: We propose a new calibration method for both 2D and 3D ultrasound probes that involves scanning an arbitrary region of a tracked needle in different poses. This approach is easier to perform than most alternative methods that require a precise alignment between US scans and a calibration phantom. RESULTS: Our calibration method provides an average accuracy of 2.49 mm for a 2D US probe with 107 mm scanning depth, and an average accuracy of 2.39 mm for a 3D US with 107 mm scanning depth. CONCLUSION: Our method proposes a unified calibration framework for 2D and 3D probes using the same phantom object, work-flow, and algorithm. Our method significantly improves the accuracy of needle-based methods for 2D US probes as well as extends its use for 3D US probes

    Invasion Percolation Between two Sites

    Full text link
    We investigate the process of invasion percolation between two sites (injection and extraction sites) separated by a distance r in two-dimensional lattices of size L. Our results for the non-trapping invasion percolation model indicate that the statistics of the mass of invaded clusters is significantly dependent on the local occupation probability (pressure) Pe at the extraction site. For Pe=0, we show that the mass distribution of invaded clusters P(M) follows a power-law P(M) ~ M^{-\alpha} for intermediate values of the mass M, with an exponent \alpha=1.39. When the local pressure is set to Pe=Pc, where Pc corresponds to the site percolation threshold of the lattice topology, the distribution P(M) still displays a scaling region, but with an exponent \alpha=1.02. This last behavior is consistent with previous results for the cluster statistics in standard percolation. In spite of these discrepancies, the results of our simulations indicate that the fractal dimension of the invaded cluster does not depends significantly on the local pressure Pe and it is consistent with the fractal dimension values reported for standard invasion percolation. Finally, we perform extensive numerical simulations to determine the effect of the lattice borders on the statistics of the invaded clusters and also to characterize the self-organized critical behavior of the invasion percolation process.Comment: 7 pages, 11 figures, submited for PR

    Therapeutic Approach to Parapneumonic Effusions and Empyemas

    Get PDF
    Face à inexistência de uma metodologia única e consensual na abordagem terapêutica dos derrames pleurais parapneumónicos e empiemas, os autores propõem um protocolo de orientação, que resultou da reflexão baseada na sua experiência e na bibliografia mais recente

    Entanglement Purification of Any Stabilizer State

    Get PDF
    We present a method for multipartite entanglement purification of any stabilizer state shared by several parties. In our protocol each party measures the stabilizer operators of a quantum error-correcting code on his or her qubits. The parties exchange their measurement results, detect or correct errors, and decode the desired purified state. We give sufficient conditions on the stabilizer codes that may be used in this procedure and find that Steane's seven-qubit code is the smallest error-correcting code sufficient to purify any stabilizer state. An error-detecting code that encodes two qubits in six can also be used to purify any stabilizer state. We further specify which classes of stabilizer codes can purify which classes of stabilizer states.Comment: 11 pages, 0 figures, comments welcome, submitting to Physical Review
    corecore