2,109 research outputs found
Assessment of landfill leachate biodegradability and treatability by means of allochthonous and autochthonous biomasses
The biodegradability and treatability of a young (3 years old) municipal landfill leachate was evaluated by means of chemical oxygen demand (COD) fractionation tests, based on respirometric techniques. The tests were performed using two different biomasses: one cultivated from the raw leachate (autochthonous biomass) and the other collected from a conventional municipal wastewater treatment plant after its acclimation to leachate (allochthonous biomass). The long term performances of the two biomasses were also studied. The results demonstrated that the amount of biodegradable COD in the leachate was strictly dependent on the biomass that was used to perform the fractionation tests. Using the autochthonous biomass, the amount of biodegradable organic substrate resulted in approximately 75% of the total COD, whereas it was close to 40% in the case of the allochthonous biomass, indicating the capacity of the autochthonous biomass to degrade a higher amount of organic compounds present in the leachate. The autochthonous biomass was characterized by higher biological activity and heterotrophic active fraction (14% vs 7%), whereas the activity of the allochthonous biomass was significantly affected by inhibitory compounds in the leachate, resulting in a lower respiration rate (SOUR = 13 mg O2 gVSS-1 h-1 vs 37 mg O2 gVSS-1 h-1). The long-term performance of the autochthonous and allochthonous biomasses indicated that the former was more suitable for the treatment of raw landfill leachate, ensuring higher removal performance towards the organic pollutants
Parameter-Free Calculation of the Solar Proton Fusion Rate in Effective Field Theory
Spurred by the recent complete determination of the weak currents in
two-nucleon systems up to in heavy-baryon chiral perturbation
theory, we carry out a parameter-free calculation of the solar proton fusion
rate in an effective field theory that combines the merits of the standard
nuclear physics method and systematic chiral expansion. Using the tritium
beta-decay rate as an input to fix the only unknown parameter in the effective
Lagrangian, we can evaluate with drastically improved precision the ratio of
the two-body contribution to the well established one-body contribution; the
ratio is determined to be (0.86\pm 0.05) %. This result is essentially
independent of the cutoff parameter for a wide range of its variation (500 MeV
\le \Lambda \le 800 MeV), a feature that substantiates the consistency of the
calculation.Comment: 10 pages. The argument is considerably more sharpened with a reduced
error ba
Realistic Calculation of the hep Astrophysical Factor
The astrophysical factor for the proton weak capture on 3He is calculated
with correlated-hyperspherical-harmonics bound and continuum wave functions
corresponding to a realistic Hamiltonian consisting of the Argonne v18
two-nucleon and Urbana-IX three-nucleon interactions. The nuclear weak charge
and current operators have vector and axial-vector components, that include
one- and many-body terms. All possible multipole transitions connecting any of
the p-3He S- and P-wave channels to the 4He bound state are considered. The
S-factor at a p-3He center-of-mass energy of 10 keV, close to the Gamow-peak
energy, is predicted to be 10.1 10^{-20} keV b, a factor of five larger than
the standard-solar-model value. The P-wave transitions are found to be
important, contributing about 40 % of the calculated S-factor.Comment: 8 pages RevTex file, submitted to Phys. Rev. Let
Haptic guidance improves the visuo-manual tracking of trajectories
BACKGROUND: Learning to perform new movements is usually achieved by
following visual demonstrations. Haptic guidance by a force feedback device is
a recent and original technology which provides additional proprioceptive cues
during visuo-motor learning tasks. The effects of two types of haptic
guidances-control in position (HGP) or in force (HGF)-on visuo-manual tracking
("following") of trajectories are still under debate. METHODOLOGY/PRINCIPALS
FINDINGS: Three training techniques of haptic guidance (HGP, HGF or control
condition, NHG, without haptic guidance) were evaluated in two experiments.
Movements produced by adults were assessed in terms of shapes (dynamic time
warping) and kinematics criteria (number of velocity peaks and mean velocity)
before and after the training sessions. CONCLUSION/SIGNIFICANCE: These results
show that the addition of haptic information, probably encoded in force
coordinates, play a crucial role on the visuo-manual tracking of new
trajectories
Polarization observables in p-d scattering below 30 MeV
Differential and total breakup cross sections as well as vector and tensor
analyzing powers for p-d scattering are studied for energies above the deuteron
breakup threshold up to E(lab)=28 MeV. The p-d scattering wave function is
expanded in terms of the correlated hyperspherical harmonic basis and the
elastic S-matrix is obtained using the Kohn variational principle in its
complex form. The effects of the Coulomb interaction, which are expected to be
important in this energy range, have been rigorously taken into account. The
Argonne AV18 interaction and the Urbana URIX three-nucleon potential have been
used to perform a comparison to the available experimental data.Comment: 31 pages, 8 figure
The Ay Problem for p-3He Elastic Scattering
We present evidence that numerically accurate quantum calculations employing
modern internucleon forces do not reproduce the proton analyzing power, A_y,
for p-3He elastic scattering at low energies. These calculations underpredict
new measured analyzing powers by approximately 30% at E_{c.m.} = 1.20 MeV and
by 40% at E_{c.m.} = 1.69 MeV, an effect analogous to a well-known problem in
p-d and n-d scattering. The calculations are performed using the complex Kohn
variational principle and the (correlated) Hyperspherical Harmonics technique
with full treatment of the Coulomb force. The inclusion of the three-nucleon
interaction does not improve the agreement with the experimental data.Comment: Latex file, 4 pages, 2 figures, to be published on Phys. Rev. Let
Evidence for Three Nucleon Force Effects in p-d Elastic Scattering
A new measurement of the p-d differential cross section at Ep= 1 MeV has been
performed. These new data and older data sets at energies below the deuteron
breakup are compared to calculations using the two-nucleon Argonne v18 and the
three-nucleon Urbana IX potentials. A quantitative estimate of the capability
of these interactions to describe the data is given in terms of a chi^2
analysis. The chi^2 per datum drastically improves when the three-nucleon
interaction is included in the Hamiltonian.Comment: 13 pages, 5 figures, to be published in Phys. Rev.
Benchmark calculation for proton-deuteron elastic scattering observables including Coulomb
Two independent calculations of proton-deuteron elastic scattering
observables including Coulomb repulsion between the two protons are compared in
the proton lab energy region between 3 MeV and 65 MeV. The hadron dynamics is
based on the purely nucleonic charge-dependent AV18 potential. Calculations are
done both in coordinate space and momentum space. The coordinate-space
calculations are based on a variational solution of the three-body
Schr\"odinger equation using a correlated hyperspherical expansion for the wave
function. The momentum-space calculations proceed via the solution of the
Alt-Grassberger-Sandhas equation using the screened Coulomb potential and the
renormalization approach. Both methods agree within 1% on all observables,
showing the reliability of both numerical techniques in that energy domain. At
energies below three-body breakup threshold the coordinate-space method remains
favored whereas at energies higher than 65 MeV the momentum-space approach
seems to be more efficient.Comment: Submitted to Phys. Rev.
Sequential batch membrane bio-reactor for wastewater treatment: The effect of increased salinity
In this work, a sequential batch membrane bioreactor pilot plant is investigated to analyze the effect of a gradual increase in salinity on carbon and nutrient removal, membrane fouling and biomass kinetic parameters. The salinity was increased by 2 g NaCl L-1 per week up to 10 g NaCl L-1. The total COD removal efficiency was quite high (93%) throughout the experiment. A gradual biomass acclimation to the salinity level was observed during the experiment, highlighting the good recovery capabilities of the system. Nitrification was also influenced by the increase in salinity, with a slight decrease in nitrification efficiency (the lowest value was obtained at 10 g NaCl L-1 due to lower nitrifier activity). Irreversible cake deposition was the predominant fouling mechanism observed during the experiment. Respirometric tests exhibited a stress effect due to salinity, with a reduction in the respiration rates observed (from 8.85 mgO2 L-1 h-1 to 4 mgO2 L-1 h-1)
- …
