202 research outputs found

    Electroweak Radiative Corrections to W and Z Boson Production at Hadron Colliders

    Get PDF
    For the envisioned high precision measurement of the W boson mass at the Tevatron and LHC it is crucial that the theoretical predictions for the W and Z production processes are under control. We briefly summarize the status of the electroweak radiative corrections to p p(pbar) -> W -> l nu and p p(pbar) -> Z,gamma -> l+ l- (l=e,mu), and present some numerical results.Comment: 3 pages, 1 figure, talk given at the DPF2000 meeting, Columbus, OH, August 9-12, 200

    Combining NLO QCD and Electroweak Radiative Corrections to W boson Production at Hadron Colliders in the POWHEG Framework

    Full text link
    The precision measurement of the mass of the WW boson is an important goal of the Fermilab Tevatron and the CERN Large Hadron Collider (LHC). It requires accurate theoretical calculations which incorporate both higher-order QCD and electroweak corrections, and also provide an interface to parton-shower Monte Carlo programs which make it possible to realistically simulate experimental data. In this paper, we present a combination of the full O(α){\cal O}(\alpha) electroweak corrections of {\tt WGRAD2}, and the next-to-leading order QCD radiative corrections to WνW\to\ell\nu production in hadronic collisions in a single event generator based on the {\tt POWHEG} framework, which is able to interface with the parton-shower Monte Carlo programs {\tt Pythia} and {\tt Herwig}. Using this new combined QCD+EW Monte Carlo program for WW production we provide numerical results for total cross sections and kinematic distributions of relevance to the WW mass measurement at the Tevatron and the LHC for the processes pp,ppˉW±μ±νμpp,p\bar p \to W^\pm \to \mu^\pm \nu_\mu. In particular, we discuss the impact of EW corrections in the presence of QCD effects when including detector resolution effects.Comment: 32 pages, 28 postscript figures, typos fixed, plot on the right-hand side of Fig.12 replaced with results from a higher statistics run, note adde

    Probing anomalous quartic gauge-boson couplings via e+e- --> 4fermions+gamma

    Full text link
    All lowest-order amplitudes for e+e- --> 4f+gamma are calculated including five anomalous quartic gauge-boson couplings that are allowed by electromagnetic gauge invariance and the custodial SU(2)_c symmetry. Three of these anomalous couplings correspond to the operators L_0, L_c, and L_n that have been constrained by the LEP collaborations in WWgamma production. The anomalous couplings are incorporated in the Monte Carlo generator RACOONWW. Moreover, for the processes e+e- --> 4f+gamma RACOONWW is improved upon including leading universal electroweak corrections such as initial-state radiation. The discussion of numerical results illustrates the size of the leading corrections as well as the impact of the anomalous quartic couplings for LEP2 energies and at 500GeV.Comment: 27 pages, latex, 42 postscript files, some misprints correcte

    Electroweak Radiative Corrections to Off-Shell W-Pair Production

    Get PDF
    We briefly describe the RacoonWW approach to calculate radiative corrections to e+ e- -> W W -> 4 fermions and present numerical results for the total W-pair production cross section at LEP2.Comment: 3 pages, 2 figures, talk given at the DPF2000 meeting, Columbus, OH, August 9-12, 200
    corecore