3,327 research outputs found

    Polarization-preserving confocal microscope for optical experiments in a dilution refrigerator with high magnetic field

    Get PDF
    We present the design and operation of a fiber-based cryogenic confocal microscope. It is designed as a compact cold-finger that fits inside the bore of a superconducting magnet, and which is a modular unit that can be easily swapped between use in a dilution refrigerator and other cryostats. We aimed at application in quantum optical experiments with electron spins in semiconductors and the design has been optimized for driving with, and detection of optical fields with well-defined polarizations. This was implemented with optical access via a polarization maintaining fiber together with Voigt geometry at the cold finger, which circumvents Faraday rotations in the optical components in high magnetic fields. Our unit is versatile for use in experiments that measure photoluminescence, reflection, or transmission, as we demonstrate with a quantum optical experiment with an ensemble of donor-bound electrons in a thin GaAs film.Comment: 9 pages, 7 figure

    Entanglement of a qubit with a single oscillator mode

    Full text link
    We solve a model of a qubit strongly coupled to a massive environmental oscillator mode where the qubit backaction is treated exactly. Using a Ginzburg-Landau formalism, we derive an effective action for this well known localization transition. An entangled state emerges as an instanton in the collective qubit-environment degree of freedom and the resulting model is shown to be formally equivalent to a Fluctuating Gap Model (FGM) of a disordered Peierls chain. Below the transition, spectral weight is transferred to an exponentially small energy scale leaving the qubit coherent but damped. Unlike the spin-boson model, coherent and effectively localized behaviors may coexist.Comment: 4 pages, 1 figure; added calculation of entanglement entrop

    Electromagnetically Induced Transparency with an Ensemble of Donor-Bound Electron Spins in a Semiconductor

    Get PDF
    We present measurements of electromagnetically induced transparency with an ensemble of donor- bound electrons in low-doped n-GaAs. We used optical transitions from the Zeeman-split electron spin states to a bound trion state in samples with optical densities of 0.3 and 1.0. The electron spin dephasing time T* \approx 2 ns was limited by hyperfine coupling to fluctuating nuclear spins. We also observe signatures of dynamical nuclear polarization, but find these effects to be much weaker than in experiments that use electron spin resonance and related experiments with quantum dots.Comment: 4 pages, 4 figures; Improved analysis of data in Fig. 3, corrected factors of 2 and p

    Digital Innovation Through Partnership Between Nature Conservation Organisations and Academia : A Qualitative Impact Assessment

    Get PDF
    We would like to thank all interviewees for sharing their experiences of working with academics, and the guest editor and three anonymous reviewers for valuable comments on earlier versions of the work. The research in this paper is supported by the RCUK dot.rural Digital economy Research Hub, University of Aberdeen (Grant reference: EP/G066051/1).Peer reviewedPublisher PD

    Stabilizing nuclear spins around semiconductor electrons via the interplay of optical coherent population trapping and dynamic nuclear polarization

    Get PDF
    We experimentally demonstrate how coherent population trapping (CPT) for donor-bound electron spins in GaAs results in autonomous feedback that prepares stabilized states for the spin polarization of nuclei around the electrons. CPT was realized by excitation with two lasers to a bound-exciton state. Transmission studies of the spectral CPT feature on an ensemble of electrons directly reveal the statistical distribution of prepared nuclear spin states. Tuning the laser driving from blue to red detuned drives a transition from one to two stable states. Our results have importance for ongoing research on schemes for dynamic nuclear spin polarization, the central spin problem and control of spin coherence.Comment: 5 pages, 4 figure

    Split-gate quantum point contacts with tunable channel length

    Get PDF
    We report on developing split-gate quantum point contacts (QPCs) that have a tunable length for the transport channel. The QPCs were realized in a GaAs/AlGaAs heterostructure with a two- dimensional electron gas (2DEG) below its surface. The conventional design uses 2 gate fingers on the wafer surface which deplete the 2DEG underneath when a negative gate voltage is applied, and this allows for tuning the width of the QPC channel. Our design has 6 gate fingers and this provides additional control over the form of the electrostatic potential that defines the channel. Our study is based on electrostatic simulations and experiments and the results show that we developed QPCs where the effective channel length can be tuned from about 200 nm to 600 nm. Length-tunable QPCs are important for studies of electron many-body effects because these phenomena show a nanoscale dependence on the dimensions of the QPC channel

    Suppressed spin dephasing for 2D and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    Get PDF
    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the fingerprint of a suppression that is enhanced due to a strong anisotropy in spin-orbit fields that can occur when the Rashba and Dresselhaus contributions are engineered to cancel each other. A surprising observation is that this mechanisms for suppressing spin dephasing is not only effective for electrons in the heterojunction quantum well, but also for electrons in a deeper bulk layer.Comment: 5 pages, 3 figure
    corecore