2,072 research outputs found
Performance comparison of point and spatial access methods
In the past few years a large number of multidimensional point access methods, also called
multiattribute index structures, has been suggested, all of them claiming good performance. Since no
performance comparison of these structures under arbitrary (strongly correlated nonuniform, short
"ugly") data distributions and under various types of queries has been performed, database
researchers and designers were hesitant to use any of these new point access methods. As shown in
a recent paper, such point access methods are not only important in traditional database applications.
In new applications such as CAD/CIM and geographic or environmental information systems, access
methods for spatial objects are needed. As recently shown such access methods are based on point
access methods in terms of functionality and performance. Our performance comparison naturally
consists of two parts. In part I we w i l l compare multidimensional point access methods, whereas in
part I I spatial access methods for rectangles will be compared. In part I we present a survey and
classification of existing point access methods. Then we carefully select the following four methods
for implementation and performance comparison under seven different data files (distributions) and
various types of queries: the 2-level grid file, the BANG file, the hB-tree and a new scheme, called
the BUDDY hash tree. We were surprised to see one method to be the clear winner which was the
BUDDY hash tree. It exhibits an at least 20 % better average performance than its competitors and is
robust under ugly data and queries. In part I I we compare spatial access methods for rectangles.
After presenting a survey and classification of existing spatial access methods we carefully selected
the following four methods for implementation and performance comparison under six different data
files (distributions) and various types of queries: the R-tree, the BANG file, PLOP hashing and the
BUDDY hash tree. The result presented two winners: the BANG file and the BUDDY hash tree.
This comparison is a first step towards a standardized testbed or benchmark. We offer our data and
query files to each designer of a new point or spatial access method such that he can run his
implementation in our testbed
Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array
In this paper we investigate the asymptotic validity of boundary layer
theory. For a flow induced by a periodic row of point-vortices, we compare
Prandtl's solution to Navier-Stokes solutions at different numbers. We
show how Prandtl's solution develops a finite time separation singularity. On
the other hand Navier-Stokes solution is characterized by the presence of two
kinds of viscous-inviscid interactions between the boundary layer and the outer
flow. These interactions can be detected by the analysis of the enstrophy and
of the pressure gradient on the wall. Moreover we apply the complex singularity
tracking method to Prandtl and Navier-Stokes solutions and analyze the previous
interactions from a different perspective
Router-level community structure of the Internet Autonomous Systems
The Internet is composed of routing devices connected between them and
organized into independent administrative entities: the Autonomous Systems. The
existence of different types of Autonomous Systems (like large connectivity
providers, Internet Service Providers or universities) together with
geographical and economical constraints, turns the Internet into a complex
modular and hierarchical network. This organization is reflected in many
properties of the Internet topology, like its high degree of clustering and its
robustness.
In this work, we study the modular structure of the Internet router-level
graph in order to assess to what extent the Autonomous Systems satisfy some of
the known notions of community structure. We show that the modular structure of
the Internet is much richer than what can be captured by the current community
detection methods, which are severely affected by resolution limits and by the
heterogeneity of the Autonomous Systems. Here we overcome this issue by using a
multiresolution detection algorithm combined with a small sample of nodes. We
also discuss recent work on community structure in the light of our results
Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion.
Massive Charged Scalar Quasinormal Modes of Reissner-N\"ordstrom Black Hole Surrounded by Quintessence
We evaluate the complex frequencies of the normal modes for the massive
charged scalar field perturbations around a Reissner-N\"ordstrom black hole
surrounded by a static and spherically symmetric quintessence using third order
WKB approximation approach. Due to the presence of quintessence, quasinormal
frequencies damp more slowly. We studied the variation of quasinormal
frequencies with charge of the black bole, mass and charge of perturbating
scalar field and the quintessential state parameter.Comment: 9 pages, 9 figures and one tabl
Recommended from our members
Consistent Testing for an Implication of Supermodular Dominance
Supermodularity, or complementarity, is a popular concept in economics which can characterize many objective functions, including utility, social welfare, and production functions. Further, supermodular dominance captures a preference for greater interdependence among inputs of those functions, and it can be applied to examine which input set would produce higher expected utility, social welfare, or production. However, contrary to the profuse literature on supermodularity, to the best of our knowledge, there is no existing work on either testing or empirical analysis for supermodular dominance. In this paper, we propose a consistent test for a useful implication of supermodular dominance and suggest a correlation dominance testing for Gaussian random variables as a special case. The test is based on a novel bootstrap critical value, which has potentially enhanced power performance by exploiting the information on the contact set on which the null hypothesis is binding. We also conduct Monte Carlo simulations to explore the finite sample performance of our tests. We then apply our test to analyze two economic questions. We first investigate whether the interdependence of stock returns among major firms has increased after the COVID-19, and find evidence supporting this conjecture. We also compare the interdependence of patent citations depending on distance, where greater interdependence can imply greater expected social welfare effect. The results suggest that, in most cases, between-state citations seem to have greater interdependence than within-state citations, implying that lively interaction between firms across states might engender greater expected social welfare than knowledge spillover within a geographically confined area
- …
