617 research outputs found
XML for Domain Viewpoints
Within research institutions like CERN (European Organization for Nuclear
Research) there are often disparate databases (different in format, type and
structure) that users need to access in a domain-specific manner. Users may
want to access a simple unit of information without having to understand detail
of the underlying schema or they may want to access the same information from
several different sources. It is neither desirable nor feasible to require
users to have knowledge of these schemas. Instead it would be advantageous if a
user could query these sources using his or her own domain models and
abstractions of the data. This paper describes the basis of an XML (eXtended
Markup Language) framework that provides this functionality and is currently
being developed at CERN. The goal of the first prototype was to explore the
possibilities of XML for data integration and model management. It shows how
XML can be used to integrate data sources. The framework is not only applicable
to CERN data sources but other environments too.Comment: 9 pages, 6 figures, conference report from SCI'2001 Multiconference
on Systemics & Informatics, Florid
A database for on-line event analysis on a distributed memory machine
Parallel in-memory databases can enhance the structuring and parallelization of programs used in High Energy Physics (HEP). Efficient database access routines are used as communication primitives which hide the communication topology in contrast to the more explicit communications like PVM or MPI. A parallel in-memory database, called SPIDER, has been implemented on a 32 node Meiko CS-2 distributed memory machine. The spider primitives generate a lower overhead than the one generated by PVM or PMI. The event reconstruction program, CPREAD of the CPLEAR experiment, has been used as a test case. Performance measurerate generated by CPLEAR
CeRuSn: a strongly correlated material with nontrivial topology
Topological insulators form a novel state of matter that provides new
opportunities to create unique quantum phenomena. While the materials used so
far are based on semiconductors, recent theoretical studies predict that also
strongly correlated systems can show non-trivial topological properties,
thereby allowing even the emergence of surface phenomena that are not possible
with topological band insulators. From a practical point of view, it is also
expected that strong correlations will reduce the disturbing impact of defects
or impurities, and at the same increase the Fermi velocities of the topological
surface states. The challenge is now to discover such correlated materials.
Here, using advanced x-ray spectroscopies in combination with band structure
calculations, we infer that CeRuSn is a strongly correlated material
with non-trivial topology.Comment: 10 pages, 6 figures, submitted to Scientific Report
Learning and digital inclusion: the ELAMP project
The Electronic Learning and Mobility Project (ELAMP) was a nationally funded project by the Department for Children, Schools and Families, which ran from 2004 to 2010. The main aim of ELAMP was to improve the education of Traveller children, particularly highly mobile learners. ELAMP focussed upon the use of mobile technology and distance learning to support, enhance and extend young Travellers’ educational and vocational opportunities. This article will reflect upon the learning and technological experiences and opportunities that the ELAMP project provided for Traveller children, young people and their families. In doing so it will critically consider the value of information technology in working with Traveller communities and advancing their educational opportunities. Reviewing ELAMP work will also demonstrate how the use of mobile technology can improve educational outcomes and Traveller families’ digital inclusion. Now that the project has ended, this article will question why we are not using what we learnt from ELAMP to move forward
Intrinsic and extrinsic x-ray absorption effects in soft x-ray diffraction from the superstructure in magnetite
We studied the (001/2) diffraction peak in the low-temperature phase of
magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3
and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin
films and in-situ cleaved single crystals. From the comparison we have been
able to determine quantitatively the contribution of intrinsic absorption
effects, thereby arriving at a consistent result for the (001/2) diffraction
peak spectrum. Our data also allow for the identification of extrinsic effects,
e.g. for a detailed modeling of the spectra in case a "dead" surface layer is
present that is only absorbing photons but does not contribute to the
scattering signal.Comment: to appear in Phys. Rev.
Tunable Emergent Heterostructures in a Prototypical Correlated Metal
At the interface between two distinct materials desirable properties, such as
superconductivity, can be greatly enhanced, or entirely new functionalities may
emerge. Similar to in artificially engineered heterostructures, clean
functional interfaces alternatively exist in electronically textured bulk
materials. Electronic textures emerge spontaneously due to competing
atomic-scale interactions, the control of which, would enable a top-down
approach for designing tunable intrinsic heterostructures. This is particularly
attractive for correlated electron materials, where spontaneous
heterostructures strongly affect the interplay between charge and spin degrees
of freedom. Here we report high-resolution neutron spectroscopy on the
prototypical strongly-correlated metal CeRhIn5, revealing competition between
magnetic frustration and easy-axis anisotropy -- a well-established mechanism
for generating spontaneous superstructures. Because the observed easy-axis
anisotropy is field-induced and anomalously large, it can be controlled
efficiently with small magnetic fields. The resulting field-controlled magnetic
superstructure is closely tied to the formation of superconducting and
electronic nematic textures in CeRhIn5, suggesting that in-situ tunable
heterostructures can be realized in correlated electron materials
Results from 730 kg days of the CRESST-II Dark Matter Search
The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via
elastic scattering off nuclei in CaWO crystals, completed 730 kg days of
data taking in 2011. We present the data collected with eight detector modules,
each with a two-channel readout; one for a phonon signal and the other for
coincidently produced scintillation light. The former provides a precise
measure of the energy deposited by an interaction, and the ratio of
scintillation light to deposited energy can be used to discriminate different
types of interacting particles and thus to distinguish possible signal events
from the dominant backgrounds. Sixty-seven events are found in the acceptance
region where a WIMP signal in the form of low energy nuclear recoils would be
expected. We estimate background contributions to this observation from four
sources: 1) "leakage" from the e/\gamma-band 2) "leakage" from the
\alpha-particle band 3) neutrons and 4) Pb-206 recoils from Po-210 decay. Using
a maximum likelihood analysis, we find, at a high statistical significance,
that these sources alone are not sufficient to explain the data. The addition
of a signal due to scattering of relatively light WIMPs could account for this
discrepancy, and we determine the associated WIMP parameters.Comment: 17 pages, 13 figure
Nano-particle vaccination combined with TLR-7 and -9 ligands triggers memory and effector CD8⁺ T-cell responses in melanoma patients.
Optimal vaccine strategies must be identified for improving T-cell vaccination against infectious and malignant diseases. MelQbG10 is a virus-like nano-particle loaded with A-type CpG-oligonucleotides (CpG-ODN) and coupled to peptide(16-35) derived from Melan-A/MART-1. In this phase IIa clinical study, four groups of stage III-IV melanoma patients were vaccinated with MelQbG10, given (i) with IFA (Montanide) s.c.; (ii) with IFA s.c. and topical Imiquimod; (iii) i.d. with topical Imiquimod; or (iv) as intralymph node injection. In total, 16/21 (76%) patients generated ex vivo detectable Melan-A/MART-1-specific T-cell responses. T-cell frequencies were significantly higher when IFA was used as adjuvant, resulting in detectable T-cell responses in all (11/11) patients, with predominant generation of effector-memory-phenotype cells. In turn, Imiquimod induced higher proportions of central-memory-phenotype cells and increased percentages of CD127(+) (IL-7R) T cells. Direct injection of MelQbG10 into lymph nodes resulted in lower T-cell frequencies, associated with lower proportions of memory and effector-phenotype T cells. Swelling of vaccine site draining lymph nodes, and increased glucose uptake at PET/CT was observed in 13/15 (87%) of evaluable patients, reflecting vaccine triggered immune reactions in lymph nodes. We conclude that the simultaneous use of both Imiquimod and CpG-ODN induced combined memory and effector CD8(+) T-cell responses
The CRESST II Dark Matter Search
Direct Dark Matter detection with cryodetectors is briefly discussed, with
particular mention of the possibility of the identification of the recoil
nucleus. Preliminary results from the CREEST II Dark Matter search, with 730
kg-days of data, are presented. Major backgrounds and methods of identifying
and dealing with them are indicated.Comment: Talk at DSU workshop, ITP Beijing, Oct. 2011. 9 figures, 2 table
- …
