3,730 research outputs found

    Enhancement of laser cooling by the use of magnetic gradients

    Full text link
    We present a laser cooling scheme for trapped ions and atoms using a combination of laser couplings and a magnetic gradient field. In a Schrieffer-Wolff transformed picture, this setup cancels the carrier and blue sideband terms completely resulting in an improved cooling behaviour compared to standard cooling schemes (e.g. sideband cooling) and allowing cooling to the vibrational ground state. A condition for optimal cooling rates is presented and the cooling behaviour for different Lamb-Dicke parameters and spontaneous decay rates is discussed. Cooling rates of one order of magnitude less than the trapping frequency are achieved using the new cooling method. Furthermore the scheme turns out to be robust under deviations from the optimal parameters and moreover provides good cooling rates also in the multi particle case.Comment: 14 pages, 8 figure

    Trapped ion chain as a neural network

    Full text link
    We demonstrate the possibility of realizing a neural network in a chain of trapped ions with induced long range interactions. Such models permit to store information distributed over the whole system. The storage capacity of such network, which depends on the phonon spectrum of the system, can be controlled by changing the external trapping potential and/or by applying longitudinal local magnetic fields. The system properties suggest the possibility of implementing robust distributed realizations of quantum logic.Comment: 4 pages, 3 figure

    Scalable solid-state quantum computation in decoherence-free subspaces with trapped ions

    Get PDF
    We propose a decoherence-free subspaces (DFS) scheme to realize scalable quantum computation with trapped ions. The spin-dependent Coulomb interaction is exploited, and the universal set of unconventional geometric quantum gates is achieved in encoded subspaces that are immune from decoherence by collective dephasing. The scalability of the scheme for the ion array system is demonstrated, either by an adiabatic way of switching on and off the interactions, or by a fast gate scheme with comprehensive DFS encoding and noise decoupling techniques.Comment: 4 pages, 1 figur

    Systematics of the odd-even effect in the resonance ionization of Os and Ti

    Get PDF
    Measurements of the odd-even effect in the mass spectrometric analysis of Ti and Os isotopes by resonance ionization mass spectrometry have been performed for ΔJ = + 1, 0 and -1 transitions. Under saturating conditions of the ionization and for ΔJ = + 1 transitions odd-even effects are reduced below the 0.5% level. Depending on the polarization state of the laser large odd isotope enrichments are observed for ΔJ = 0 and -1 transitions which can be reduced below the 0.5% level by depolarization of the laser field

    Noncontact modulation calorimetry of metallic liquids in low Earth orbit

    Get PDF
    Noncontact modulation calorimetry using electromagnetic heating and radiative heat loss under ultrahigh-vacuum conditions has been applied to levitated solid, liquid, and metastable liquid samples. This experiment requires a reduced gravity environment over an extended period of time and allows the measurement of several thermophysical properties, such as the enthalpy of fusion and crystallization, specific heat, total hemispherical emissivity, and effective thermal conductivity with high precision as a function of temperature. From the results on eutectic glass forming Zr-based alloys thermodynamic functions are obtained which describe the glass-forming ability of these alloys

    Systematics of isotope ratio measurements with resonant laser photoionization sources

    Get PDF
    Sources of laser-induced even-even and odd-even isotopic selectivity in the resonance ionization mass spectroscopy of Os and Ti have been investigated experimentally for various types of transitions. A set of conditions with regard to laser bandwidth and frequency tuning, polarization state and intensity was obtained for which isotopic selectivity is either absent or reduced below the 2 % level

    Simultaneous cooling of axial vibrational modes in a linear ion trap

    Get PDF
    In order to use a collection of trapped ions for experiments where a well-defined preparation of vibrational states is necessary, all vibrational modes have to be cooled to ensure precise and repeatable manipulation of the ions quantum states. A method for simultaneous sideband cooling of all axial vibrational modes is proposed. By application of a magnetic field gradient the absorption spectrum of each ion is modified such that sideband resonances of different vibrational modes coincide. The ion string is then irradiated with monochromatic electromagnetic radiation, in the optical or microwave regime, for sideband excitation. This cooling scheme is investigated in detailed numerical studies. Its application for initializing ion strings for quantum information processing is extensively discussed

    Spin and Orbital Splitting in Ferromagnetic Contacted Single Wall Carbon Nanotube Devices

    Full text link
    We observed the coulomb blockade phenomena in ferromagnetic contacting single wall semiconducting carbon nanotube devices. No obvious Coulomb peaks shift was observed with existing only the Zeeman splitting at 4K. Combining with other effects, the ferromagnetic leads prevent the orbital spin states splitting with magnetic field up to 2 Tesla at 4K. With increasing magnetic field further, both positive or negative coulomb peaks shift slopes are observed associating with clockwise and anticlockwise orbital state splitting. The strongly suppressed/enhanced of the conductance has been observed associating with the magnetic field induced orbital states splitting/converging

    Radio Sources in the 2dF Galaxy Redshift Survey. I. Radio Source Populations

    Get PDF
    We present the first results from a study of the radio continuum properties of galaxies in the 2dF Galaxy Redshift Survey, based on thirty 2dF fields covering a total area of about 100 square degrees. About 1.5% of galaxies with b(J) < 19.4 mag are detected as radio continuum sources in the NRAO VLA Sky Survey (NVSS). Of these, roughly 40% are star-forming galaxies and 60% are active galaxies (mostly low-power radio galaxies and a few Seyferts). The combination of 2dFGRS and NVSS will eventually yield a homogeneous set of around 4000 radio-galaxy spectra, which will be a powerful tool for studying the distriibution and evolution of both AGN and starburst galaxies out to redshift z=0.3.Comment: 14 pages, 7 figures, accepted for publication in PAS
    corecore