66 research outputs found
Reply to "Comment on 'Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate'"
In the Comment by M. Mackie \textit{et al.} [arXiv: physics/0212111 v.4], the
authors suggest that the molecular conversion efficiency in atom-molecule
STIRAP can be improved by lowering the initial atomic density, which in turn
requires longer pulse durations to maintain adiabaticity. Apart from the fact
that the mean-field approximation becomes questionable at low densities, we
point out that a low-density strategy with longer pulses has several problems.
It generally requires higher pulse energies, and increases radiative losses. We
also show that even within the approximations used in the Comment, their
example leads to no efficiency improvement compared to our high-density case.
In a more careful analysis including radiative losses neglected in the Comment,
the proposed strategy gives almost no conversion owing to the longer pulse
durations required.Comment: Accepted for publication in Phys. Rev.
Controlling two-species Mott-insulator phses in an optical lattice to form an array of dipolar molecules
We consider the transfer of a two-species Bose-Einstein condensate into an
optical lattice with a density such that that a Mott-insulator state with one
atom per species per lattice site is obtained in the deep lattice regime.
Depending on collision parameters the result could be either a `mixed' or a
`separated' Mott-insulator phase. Such a `mixed' two-species insulator could
then be photo-associated into an array of dipolar molecules suitable for
quantum computation or the formation of a dipolar molecular condensate. For the
case of a Rb-K two-species BEC, however, the large inter-species
scattering length makes obtaining the desired `mixed' Mott insulator phase
difficult. To overcome this difficulty we investigate the effect of varying the
lattice frequency on the mean-field interaction and find a favorable parameter
regime under which a lattice of dipolar molecules could be generated
Matter-wave entanglement and teleportation by molecular dissociation and collisions
We propose dissociation of cold diatomic molecules as a source of atom pairs
with highly correlated (entangled) positions and momenta, approximating the
original quantum state introduced by Einstein, Podolsky and Rosen (EPR) [Phys.
Rev. 47, 777 (1935)]. Wavepacket teleportation is shown to be achievable by its
collision with one of the EPR correlated atoms and manipulation of the other
atom in the pair.Comment: REVTeX, 4 pages, 3 figures. Text reformulated, modified figs. 1 and
2. Accepted by Phys. Rev. Let
Formation of Two Component Bose Condensate During the Chemical Potential Curve Crossing
In this article we study the formation of the two modes Bose-Einstein
condensate and the correlation between them. We show that beyond the mean field
approximation the dissociation of a molecular condensate due to the chemical
potential curve crossing leads to the formation of two modes condensate. We
also show that these two modes are correlated in a two mode squeezed state.Comment: 10 page
Creating massive entanglement of Bose condensed atoms
We propose a direct, coherent coupling scheme that can create massively
entangled states of Bose-Einstein condensed atoms. Our idea is based on an
effective interaction between two atoms from coherent Raman processes through a
(two atom) molecular intermediate state. We compare our scheme with other
recent proposals for generation of massive entanglement of Bose condensed
atoms.Comment: 5 pages, 3 figures; Updated figure 3(a), original was "noisy
Rate limit for photoassociation of a Bose-Einstein condensate
We simulate numerically the photodissociation of molecules into noncondensate
atom pairs that accompanies photoassociation of an atomic Bose-Einstein
condensate into a molecular condensate. Such rogue photodissociation sets a
limit on the achievable rate of photoassociation. Given the atom density \rho
and mass m, the limit is approximately 6\hbar\rho^{2/3}/m. At low temperatures
this is a more stringent restriction than the unitary limit of scattering
theory.Comment: 5 pgs, 18 refs., 3 figs., submitted to Phys. Rev. Let
Bose-enhanced chemistry: Amplification of selectivity in the dissociation of molecular Bose-Einstein condensates
We study the photodissociation chemistry of a quantum degenerate gas of
bosonic triatomic molecules, assuming two open rearrangement channels
( or ). The equations of motion are equivalent to those of a
parametric multimode laser, resulting in an exponential buildup of macroscopic
mode populations. By exponentially amplifying a small differential in the
single-particle rate-coefficients, Bose stimulation leads to a nearly complete
selectivity of the collective -body process, indicating a novel type of
ultra-selective quantum degenerate chemistry.Comment: 5 pages, 3 figure
Stimulated Raman adiabatic passage from an atomic to a molecular Bose-Einstein condensate
The process of stimulated Raman adiabatic passage (STIRAP) provides a
possible route for the generation of a coherent molecular Bose-Einstein
condensate (BEC) from an atomic BEC. We analyze this process in a
three-dimensional mean-field theory, including atom-atom interactions and
non-resonant intermediate levels. We find that the process is feasible, but at
larger Rabi frequencies than anticipated from a crude single-mode lossless
analysis, due to two-photon dephasing caused by the atomic interactions. We
then identify optimal strategies in STIRAP allowing one to maintain high
conversion efficiencies with smaller Rabi frequencies and under experimentally
less demanding conditions.Comment: Final published versio
Quantum field effects in coupled atomic and molecular Bose-Einstein condensates
This paper examines the parameter regimes in which coupled atomic and
molecular Bose-Einstein condensates do not obey the Gross-Pitaevskii equation.
Stochastic field equations for coupled atomic and molecular condensates are
derived using the functional positive-P representation. These equations
describe the full quantum state of the coupled condensates and include the
commonly used Gross-Pitaevskii equation as the noiseless limit. The model
includes all interactions between the particles, background gas losses,
two-body losses and the numerical simulations are performed in three
dimensions. It is found that it is possible to differentiate the quantum and
semiclassical behaviour when the particle density is sufficiently low and the
coupling is sufficiently strong.Comment: 4 postscript figure
Entanglement transfer from dissociated molecules to photons
We introduce and study the concept of a reversible transfer of the quantum
state of two internally-translationally entangled fragments, formed by
molecular dissociation, to a photon pair. The transfer is based on intracavity
stimulated Raman adiabatic passage and it requires a combination of processes
whose principles are well established.Comment: 5 pages, 3 figure
- …
