175,832 research outputs found

    Network support for integrated design

    Get PDF
    A framework of network support for utilization of integrated design over the Internet has been developed. The techniques presented also applicable for Intranet/Extranet. The integrated design system was initially developed for local application in a single site. With the network support, geographically dispersed designers can collaborate a design task through out the total design process, quickly respond to clients’ requests and enhance the design argilty. In this paper, after a brief introduction of the integrated design system, the network support framework is presented, followed by description of two key techniques involved: Java Saverlet approach for remotely executing a large program and online CAD collaboration

    Nonparametric IV estimation of shape-invariant Engel curves

    Get PDF
    This paper concerns the identification and estimation of a shape-invariant Engel curve system with endogenous total expenditure. The shape-invariant specification involves a common shift parameter for each demographic group in a pooled system of Engel curves. Our focus is on the identification and estimation of both the nonparametric shape of the Engel curve and the parametric specification of the demographic scaling parameters. We present a new identification condition, closely related to the concept of bounded completeness in statistics. The estimation procedure applies the sieve minimum distance estimation of conditional moment restrictions allowing for endogeneity. We establish a new root mean squared convergence rate for the nonparametric IV regression when the endogenous regressor has unbounded support. Root-n asymptotic normality and semiparametric efficiency of the parametric components are also given under a set of ‘low-level’ sufficient conditions. Monte Carlo simulations shed lights on the choice of smoothing parameters and demonstrate that the sieve IV estimator performs well. An application is made to the estimation of Engel curves using the UK Family Expenditure Survey and shows the importance of adjusting for endogeneity in terms of both the curvature and demographic parameters of systems of Engel curves

    Selecting between two transition states by which water oxidation intermediates on an oxide surface decay

    Full text link
    While catalytic mechanisms on electrode surfaces have been proposed for decades, the pathways by which the product's chemical bonds evolve from the initial charge-trapping intermediates have not been resolved in time. Here, we discover a reactive population of charge-trapping intermediates with states in the middle of a semiconductor's band-gap to reveal the dynamics of two parallel transition state pathways for their decay. Upon photo-triggering the water oxidation reaction from the n-SrTiO3 surface with band-gap, pulsed excitation, the intermediates' microsecond decay reflects transition state theory (TST) through: (1) two distinct and reaction dependent (pH, T, Ionic Strength, and H/D exchange) time constants, (2) a primary kinetic salt effect on each activation barrier and an H/D kinetic isotope effect on one, and (3) realistic activation barrier heights (0.4 - 0.5 eV) and TST pre-factors (10^11 - 10^12 Hz). A photoluminescence from midgap states in n-SrTiO3 reveals the reaction dependent decay; the same spectrum was previously assigned by us to hole-trapping at parallel Ti-O(dot)-Ti (bridge) and perpendicular Ti-O(dot) (oxyl) O-sites using in situ ultrafast vibrational and optical spectroscopy. Therefore, the two transition states are naturally associated with the decay of these respective intermediates. Furthermore, we show that reaction conditions select between the two pathways, one of which reflects a labile intermediate facing the electrolyte (the oxyl) and the other a lattice oxygen (the bridge). Altogether, we experimentally isolate an important activation barrier for water oxidation, which is necessary for designing water oxidation catalysts with high O2 turn over. Moreover, in isolating it, we identify competing mechanisms for O2 evolution at surfaces and show how to use reaction conditions to select between them

    Nonmonotonic External Field Dependence of the Magnetization in a Finite Ising Model: Theory and MC Simulation

    Full text link
    Using ϕ4\phi^4 field theory and Monte Carlo (MC) simulation we investigate the finite-size effects of the magnetization MM for the three-dimensional Ising model in a finite cubic geometry with periodic boundary conditions. The field theory with infinite cutoff gives a scaling form of the equation of state h/Mδ=f(hLβδ/ν,t/h1/βδ)h/M^\delta = f(hL^{\beta\delta/\nu}, t/h^{1/\beta\delta}) where t=(TTc)/Tct=(T-T_c)/T_c is the reduced temperature, hh is the external field and LL is the size of system. Below TcT_c and at TcT_c the theory predicts a nonmonotonic dependence of f(x,y)f(x,y) with respect to xhLβδ/νx \equiv hL^{\beta\delta/\nu} at fixed yt/h1/βδy \equiv t/h^{1/\beta \delta} and a crossover from nonmonotonic to monotonic behaviour when yy is further increased. These results are confirmed by MC simulation. The scaling function f(x,y)f(x,y) obtained from the field theory is in good quantitative agreement with the finite-size MC data. Good agreement is also found for the bulk value f(,0)f(\infty,0) at TcT_c.Comment: LaTex, 12 page

    Non-universal size dependence of the free energy of confined systems near criticality

    Full text link
    The singular part of the finite-size free energy density fsf_s of the O(n) symmetric ϕ4\phi^4 field theory in the large-n limit is calculated at finite cutoff for confined geometries of linear size L with periodic boundary conditions in 2 < d < 4 dimensions. We find that a sharp cutoff Λ\Lambda causes a non-universal leading size dependence fsΛd2L2f_s \sim \Lambda^{d-2} L^{-2} near TcT_c which dominates the universal scaling term Ld\sim L^{-d}. This implies a non-universal critical Casimir effect at TcT_c and a leading non-scaling term L2\sim L^{-2} of the finite-size specific heat above TcT_c.Comment: RevTex, 4 page

    Calibration of low-temperature ac susceptometers with a copper cylinder standard

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.A high-quality low-temperature ac susceptometer is calibrated by comparing the measured ac susceptibility of a copper cylinder with its eddy-current ac susceptibility accurately calculated. Different from conventional calibration techniques that compare the measured results with the known property of a standard sample at certain fixed temperature T, field amplitude Hm, and frequency f, to get a magnitude correction factor, here, the electromagnetic properties of the copper cylinder are unknown and are determined during the calibration of the ac susceptometer in the entire T, Hm, and f range. It is shown that the maximum magnitude error and the maximum phase error of the susceptometer are less than 0.7% and 0.3°, respectively, in the region T = 5-300 K and f = 111-1111 Hz at Hm = 800 A/m, after a magnitude correction by a constant factor as done in a conventional calibration. However, the magnitude and phase errors can reach 2% and 4.3° at 10 000 and 11 Hz, respectively. Since the errors are reproducible, a large portion of them may be further corrected after a calibration, the procedure for which is given. Conceptual discussions concerning the error sources, comparison with other calibration methods, and applications of ac susceptibility techniques are presented
    corecore