25,308 research outputs found

    Non-global Logarithms at 3 Loops, 4 Loops, 5 Loops and Beyond

    Full text link
    We calculate the coefficients of the leading non-global logarithms for the hemisphere mass distribution analytically at 3, 4, and 5 loops at large Nc . We confirm that the integrand derived with the strong-energy-ordering approximation and fixed-order iteration of the Banfi-Marchesini-Syme (BMS) equation agree. Our calculation exploits a hidden PSL(2,R) symmetry associated with the jet directions, apparent in the BMS equation after a stereographic projection to the Poincare disk. The required integrals have an iterated form, leading to functions of uniform transcendentality. This allows us to extract the coefficients, and some functional dependence on the jet directions, by computing the symbols and coproducts of appropriate expressions involving classical and Goncharov polylogarithms. Convergence of the series to a numerical solution of the BMS equation is also discussed.Comment: 42 pages, 6 figures; v2: small typos correcte

    Thermal fluctuations and anomalous elasticity of homogeneous nematic elastomers

    Full text link
    We present a unified formulation of a rotationally invariant nonlinear elasticity for a variety of spontaneously anisotropic phases, and use it to study thermal fluctuations in nematic elastomers and spontaneously anisotropic gels. We find that in a thermodynamic limit homogeneous nematic elastomers are universally incompressible, are characterized by a universal ratio of shear moduli, and exhibit an anomalous elasticity controlled by a nontrivial low temperature fixed point perturbative in D=3-epsilon dimensions. In three dimensions, we make predictions that are asymptotically exact.Comment: 4 RevTeX pgs,,submitted to Europhysics Letter

    A topological look at the quantum spin Hall state

    Full text link
    We propose a topological understanding of the quantum spin Hall state without considering any symmetries, and it follows from the gauge invariance that either the energy gap or the spin spectrum gap needs to close on the system edges, the former scenario generally resulting in counterpropagating gapless edge states. Based upon the Kane-Mele model with a uniform exchange field and a sublattice staggered confining potential near the sample boundaries, we demonstrate the existence of such gapless edge states and their robust properties in the presence of impurities. These gapless edge states are protected by the band topology alone, rather than any symmetries.Comment: 5 pages, 4 figure

    Probing spin entanglement by gate-voltage-controlled interference of current correlation in quantum spin Hall insulators

    Full text link
    We propose an entanglement detector composed of two quantum spin Hall insulators and a side gate deposited on one of the edge channels. For an ac gate voltage, the differential noise contributed from the entangled electron pairs exhibits the nontrivial step structures, from which the spin entanglement concurrence can be easily obtained. The possible spin dephasing effects in the quantum spin Hall insulators are also included.Comment: Physics Letters A in pres

    Quantum Hall Effect in Thin Films of Three-Dimensional Topological Insulators

    Full text link
    We show that a thin film of a three-dimensional topological insulator (3DTI) with an exchange field is a realization of the famous Haldane model for quantum Hall effect (QHE) without Landau levels. The exchange field plays the role of staggered fluxes on the honeycomb lattice, and the hybridization gap of the surface states is equivalent to alternating on-site energies on the AB sublattices. A peculiar phase diagram for the QHE is predicted in 3DTI thin films under an applied magnetic field, which is quite different from that either in traditional QHE systems or in graphene.Comment: 4 pages, 4 figure

    Factorization Violation and Scale Invariance

    Full text link
    Factorization violating effects in hadron scattering are due mainly to spectator-spectator interactions. While it is known that these interactions cancel in inclusive cross sections, like for the Drell-Yan process, not much is known about for what classes of observables factorization is violated. We show that for pure Glauber ladder graphs, all amplitude-level factorization violating effects completely cancel at cross section level for any single-scale observable (such as hadronic transverse energy or beam thrust). This result disproves previous claims that these pure Glauber graphs are factorization-violating. Our proof exploits scale invariance of two-to-two scattering amplitudes in an essential way. The leading factorization-violating effects therefore come from graphs with at least one soft gluon, involving the Lipatov vertex off of the Glauber ladders. This implies that real soft radiation must be involved in factorization-violation, shedding light on the connection between factorization-violation and the underlying event.Comment: 36 pages, 15 figure
    corecore