45,206 research outputs found

    Coordinative Entities: Forms of Organizing in Data Intensive Science

    Get PDF
    Scientific collaboration is a long-standing subject of CSCW scholarship that typically focuses on the development and use of computing systems to facilitate research. The research presented in this article investigates the sociality of science by identifying and describing particular, common forms of organizing that researchers in four different scientific realms employ to conduct work in both local contexts and as part of distributed, global projects. This paper introduces five prototypical forms of organizing we categorize as coordinative entities: the Principal Group, Intermittent Exchange, Sustained Aggregation, Federation, and Facility Organization. Coordinative entities as a categorization help specify, articulate, compare, and trace overlapping and evolving arrangements scientists use to facilitate data intensive research. We use this typology to unpack complexities of data intensive scientific collaboration in four cases, showing how scientists invoke different coordinative entities across three types of research activities: data collection, processing, and analysis. Our contribution scrutinizes the sociality of scientific work to illustrate how these actors engage in relational work within and among diverse, dispersed forms of organizing across project, funding, and disciplinary boundaries

    Elastic Wave Scattering and Dynamic Stress Concentrations in Stretching Thick Plates with Two Cutouts by Using the Refined Dynamic Theory

    Get PDF
    Based on the refined dynamic equation of stretching plates, the elastic tension–compression wave scattering and dynamic stress concentrations in the thick plate with two cutouts are studied. In view of the problem that the shear stress is automatically satisfied under the free boundary condition, the generalized stress of the first-order vanishing moment of shear stress is considered. The numerical results indicate that, as the cutout is thick, the maximum value of the dynamic stress factor obtained using the refined dynamic theory is 19% higher than that from the solution of plane stress problems of elastic dynamics

    Comment on Higgs Inflation and Naturalness

    Get PDF
    We rebut the recent claim (arXiv:0912.5463) that Einstein-frame scattering in the Higgs inflation model is unitary above the cut-off energy Lambda ~ Mp/xi. We show explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory. In a covariant gauge they arise from non-minimal Higgs self-couplings, which cannot be removed by field redefinitions because the target space is not flat. In unitary gauge, where there is only a single scalar which can be redefined to achieve canonical kinetic terms, the unitarity problems arise through non-minimal Higgs-gauge couplings.Comment: 5 pages, 1 figure V3: Journal Versio

    New Constraints (and Motivations) for Abelian Gauge Bosons in the MeV-TeV Mass Range

    Full text link
    We survey the phenomenological constraints on abelian gauge bosons having masses in the MeV to multi-GeV mass range (using precision electroweak measurements, neutrino-electron and neutrino-nucleon scattering, electron and muon anomalous magnetic moments, upsilon decay, beam dump experiments, atomic parity violation, low-energy neutron scattering and primordial nucleosynthesis). We compute their implications for the three parameters that in general describe the low-energy properties of such bosons: their mass and their two possible types of dimensionless couplings (direct couplings to ordinary fermions and kinetic mixing with Standard Model hypercharge). We argue that gauge bosons with very small couplings to ordinary fermions in this mass range are natural in string compactifications and are likely to be generic in theories for which the gravity scale is systematically smaller than the Planck mass - such as in extra-dimensional models - because of the necessity to suppress proton decay. Furthermore, because its couplings are weak, in the low-energy theory relevant to experiments at and below TeV scales the charge gauged by the new boson can appear to be broken, both by classical effects and by anomalies. In particular, if the new gauge charge appears to be anomalous, anomaly cancellation does not also require the introduction of new light fermions in the low-energy theory. Furthermore, the charge can appear to be conserved in the low-energy theory, despite the corresponding gauge boson having a mass. Our results reduce to those of other authors in the special cases where there is no kinetic mixing or there is no direct coupling to ordinary fermions, such as for recently proposed dark-matter scenarios.Comment: 49 pages + appendix, 21 figures. This is the final version which appears in JHE
    corecore