25,136 research outputs found
Learning from the experts: exploring playground experience and activities using a write and draw technique.
BACKGROUND: Qualitative research into the effect of school recess on children's physical activity is currently limited. This study used a write and draw technique to explore children's perceptions of physical activity opportunities during recess. METHODS: 299 children age 7-11 years from 3 primary schools were enlisted. Children were grouped into Years 3 & 4 and Years 5 & 6 and completed a write and draw task focusing on likes and dislikes. Pen profiles were used to analyze the data. RESULTS: Results indicated 'likes' focused on play, positive social interaction, and games across both age groups but showed an increasing dominance of games with an appreciation for being outdoors with age. 'Dislikes' focused on dysfunctional interactions linked with bullying, membership, equipment, and conflict for playground space. Football was a dominant feature across both age groups and 'likes/dislikes' that caused conflict and dominated the physically active games undertaken. CONCLUSION: Recess was important for the development of conflict management and social skills and contributed to physical activity engagement. The findings contradict suggestions that time spent in recess should be reduced because of behavioral issues
Generalized Satisfiability Problems via Operator Assignments
Schaefer introduced a framework for generalized satisfiability problems on
the Boolean domain and characterized the computational complexity of such
problems. We investigate an algebraization of Schaefer's framework in which the
Fourier transform is used to represent constraints by multilinear polynomials
in a unique way. The polynomial representation of constraints gives rise to a
relaxation of the notion of satisfiability in which the values to variables are
linear operators on some Hilbert space. For the case of constraints given by a
system of linear equations over the two-element field, this relaxation has
received considerable attention in the foundations of quantum mechanics, where
such constructions as the Mermin-Peres magic square show that there are systems
that have no solutions in the Boolean domain, but have solutions via operator
assignments on some finite-dimensional Hilbert space. We obtain a complete
characterization of the classes of Boolean relations for which there is a gap
between satisfiability in the Boolean domain and the relaxation of
satisfiability via operator assignments. To establish our main result, we adapt
the notion of primitive-positive definability (pp-definability) to our setting,
a notion that has been used extensively in the study of constraint satisfaction
problems. Here, we show that pp-definability gives rise to gadget reductions
that preserve satisfiability gaps. We also present several additional
applications of this method. In particular and perhaps surprisingly, we show
that the relaxed notion of pp-definability in which the quantified variables
are allowed to range over operator assignments gives no additional expressive
power in defining Boolean relations
RankPL: A Qualitative Probabilistic Programming Language
In this paper we introduce RankPL, a modeling language that can be thought of
as a qualitative variant of a probabilistic programming language with a
semantics based on Spohn's ranking theory. Broadly speaking, RankPL can be used
to represent and reason about processes that exhibit uncertainty expressible by
distinguishing "normal" from" surprising" events. RankPL allows (iterated)
revision of rankings over alternative program states and supports various types
of reasoning, including abduction and causal inference. We present the
language, its denotational semantics, and a number of practical examples. We
also discuss an implementation of RankPL that is available for download
Headwaters are critical reservoirs of microbial diversity for fluvial networks
Streams and rivers form conspicuous networks on the Earth and are among nature's most effective integrators. Their dendritic structure reaches into the terrestrial landscape and accumulates water and sediment en route from abundant headwater streams to a single river mouth. The prevailing view over the last decades has been that biological diversity also accumulates downstream. Here, we show that this pattern does not hold for fluvial biofilms, which are the dominant mode of microbial life in streams and rivers and which fulfil critical ecosystem functions therein. Using 454 pyrosequencing on benthic biofilms from 114 streams, we found that microbial diversity decreased from headwaters downstream and especially at confluences. We suggest that the local environment and biotic interactions may modify the influence of metacommunity connectivity on local biofilm biodiversity throughout the network. In addition, there was a high degree of variability in species composition among headwater streams that could not be explained by geographical distance between catchments. This suggests that the dendritic nature of fluvial networks constrains the distributional patterns of microbial diversity similar to that of animals. Our observations highlight the contributions that headwaters make in the maintenance of microbial biodiversity in fluvial networks
Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice.
Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism
The role of tool geometry in process damped milling
The complex interaction between machining structural systems and the cutting process results in machining instability, so called chatter. In some milling scenarios, process damping is a useful phenomenon that can be exploited to mitigate chatter and hence improve productivity. In the present study, experiments are performed to evaluate the performance of process damped milling considering different tool geometries (edge radius, rake and relief angles and variable helix/pitch). The results clearly indicate that variable helix/pitch angles most significantly increase process damping performance. Additionally, increased cutting edge radius moderately improves process damping performance, while rake and relief angles have a smaller and closely coupled effect
Decreased dopamine activity predicts relapse in methamphetamine abusers.
Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [(11)C]raclopride in 16 METH abusers, both after placebo and after challenge with 60 mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes
Nucleotide precursors prevent folic acid-resistant neural tube defects in the mouse
Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid is thought to act through folate one-carbon metabolism, which transfers one-carbon units for methylation reactions and nucleotide biosynthesis. Hence suboptimal performance of the intervening reactions could limit the efficacy of folic acid. We hypothesized that direct supplementation with nucleotides, downstream of folate metabolism, has the potential to support neural tube closure. Therefore, in a mouse model that exhibits folic acid-resistant neural tube defects, we tested the effect of specific combinations of pyrimidine and purine nucleotide precursors and observed a significant protective effect. Labelling in whole embryo culture showed that nucleotides are taken up by the neurulating embryo and incorporated into genomic DNA. Furthermore, the mitotic index was elevated in neural folds and hindgut of treated embryos, consistent with a proposed mechanism of neural tube defect prevention through stimulation of cellular proliferation. These findings may provide an impetus for future investigations of supplemental nucleotides as a means to prevent a greater proportion of human neural tube defects than can be achieved by folic acid alone
The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) ‘On the plant-remains from the Downtonian of England and Wales'
© 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. The file attached is the published version of the article
- …
