2,480 research outputs found
High Performance P3M N-body code: CUBEP3M
This paper presents CUBEP3M, a publicly-available high performance
cosmological N-body code and describes many utilities and extensions that have
been added to the standard package. These include a memory-light runtime SO
halo finder, a non-Gaussian initial conditions generator, and a system of
unique particle identification. CUBEP3M is fast, its accuracy is tuneable to
optimize speed or memory, and has been run on more than 27,000 cores, achieving
within a factor of two of ideal weak scaling even at this problem size. The
code can be run in an extra-lean mode where the peak memory imprint for large
runs is as low as 37 bytes per particles, which is almost two times leaner than
other widely used N-body codes. However, load imbalances can increase this
requirement by a factor of two, such that fast configurations with all the
utilities enabled and load imbalances factored in require between 70 and 120
bytes per particles. CUBEP3M is well designed to study large scales
cosmological systems, where imbalances are not too large and adaptive
time-stepping not essential. It has already been used for a broad number of
science applications that require either large samples of non-linear
realizations or very large dark matter N-body simulations, including
cosmological reionization, halo formation, baryonic acoustic oscillations, weak
lensing or non-Gaussian statistics. We discuss the structure, the accuracy,
known systematic effects and the scaling performance of the code and its
utilities, when applicable.Comment: 20 pages, 17 figures, added halo profiles, updated to match MNRAS
accepted versio
Normalizing the Temperature Function of Clusters of Galaxies
We re-examine the constraints which can be robustly obtained from the
observed temperature function of X-ray cluster of galaxies. The cluster mass
function has been thoroughly studied in simulations and analytically, but a
direct simulation of the temperature function is presented here for the first
time. Adaptive hydrodynamic simulations using the cosmological Moving Mesh
Hydro code of Pen (1997a) are used to calibrate the temperature function for
different popular cosmologies. Applying the new normalizations to the
present-day cluster abundances, we find for a hyperbolic universe, and for a spatially flat universe with a cosmological constant.
The simulations followed the gravitational shock heating of the gas and dark
matter, and used a crude model for potential energy injection by supernova
heating. The error bars are dominated by uncertainties in the heating/cooling
models. We present fitting formulae for the mass-temperature conversions and
cluster abundances based on these simulations.Comment: 20 pages incl 5 figures, final version for ApJ, corrected open
universe \gamma relation, results unchange
Failure of the stem in total hip replacement. A study of aetiology and mechanism of failure in 13 cases.
Thirteen failed stem of Total Hip Replacement were studied: 9 were Charnley THR from an homogeneous series, which gives an incidence of 2.4% of stem fractures with a follow-up of 9-16 years; 4 were Mueller THR. Fatigue fracture of the stem occurred by defective support of the proximal part of the femur, following resorption of the calcar. In all cases reactive tissue to foreign body particles, metal and polyethylene, was found where bone resorption occurred. In Mueller THR wear of the cup produced the large amount of polyethylene particles; in Charnley THR metal particles prevailed and corrosion of the stem is suggested to be the initiating factor
Power Spectra in Global Defect Theories of Cosmic Structure Formation
An efficient technique for computing perturbation power spectra in field
ordering theories of cosmic structure formation is introduced, enabling
computations to be carried out with unprecedented precision. Large scale
simulations are used to measure unequal time correlators of the source stress
energy, taking advantage of scaling during matter and radiation domination, and
causality, to make optimal use of the available dynamic range. The correlators
are then re-expressed in terms of a sum of eigenvector products, a
representation which we argue is optimal, enabling the computation of the final
power spectra to be performed at high accuracy. Microwave anisotropy and matter
perturbation power spectra for global strings, monopoles, textures and
non-topological textures are presented and compared with recent observations.Comment: 4 pages, compressed and uuencoded RevTex file and postscript figure
The naked singularity in the global structure of critical collapse spacetimes
We examine the global structure of scalar field critical collapse spacetimes
using a characteristic double-null code. It can integrate past the horizon
without any coordinate problems, due to the careful choice of constraint
equations used in the evolution. The limiting sequence of sub- and
supercritical spacetimes presents an apparent paradox in the expected Penrose
diagrams, which we address in this paper. We argue that the limiting spacetime
converges pointwise to a unique limit for all r>0, but not uniformly. The r=0
line is different in the two limits. We interpret that the two different
Penrose diagrams differ by a discontinuous gauge transformation. We conclude
that the limiting spacetime possesses a singular event, with a future removable
naked singularity.Comment: RevTeX 4; 6 pages, 7 figure
The Kinetic Sunyaev-Zel'dovich Effect from Radiative Transfer Simulations of Patchy Reionization
We present the first calculation of the kinetic Sunyaev-Zel'dovich (kSZ)
effect due to the inhomogeneous reionization of the universe based on detailed
large-scale radiative transfer simulations of reionization. The resulting sky
power spectra peak at l=2000-8000 with maximum values of
l^2C_l~1\times10^{-12}. The peak scale is determined by the typical size of the
ionized regions and roughly corresponds to the ionized bubble sizes observed in
our simulations, ~5-20 Mpc. The kSZ anisotropy signal from reionization
dominates the primary CMB signal above l=3000. This predicted kSZ signal at
arcminute scales is sufficiently strong to be detectable by upcoming
experiments, like the Atacama Cosmology Telescope and South Pole Telescope
which are expected to have ~1' resolution and ~muK sensitivity. The extended
and patchy nature of the reionization process results in a boost of the peak
signal in power by approximately one order of magnitude compared to a uniform
reionization scenario, while roughly tripling the signal compared with that
based upon the assumption of gradual but spatially uniform reionization. At
large scales the patchy kSZ signal depends largely on the ionizing source
efficiencies and the large-scale velocity fields: sources which produce photons
more efficiently yield correspondingly higher signals. The introduction of
sub-grid gas clumping in the radiative transfer simulations produces
significantly more power at small scales, and more non-Gaussian features, but
has little effect at large scales. The patchy nature of the reionization
process roughly doubles the total observed kSZ signal for l~3000-10^4 compared
to non-patchy scenarios with the same total electron-scattering optical depth.Comment: 14 pages, 13 figures (some in color), submitted to Ap
Numerical parameter survey of non-radiative black hole accretion: flow structure and variability of the rotation measure
We conduct a survey of numerical simulations to probe the structure and appearance of non-radiative black hole accretion flows like the supermassive black hole at the Galactic Centre. We find a generic set of solutions, and make specific predictions for currently feasible rotation measure (RM) observations, which are accessible to current instruments including the Expanded Very Large Array (EVLA), Giant Metrewave Radio Telescope (GMRT) and Atacama Large Millimeter Array (ALMA). The slow time variability of the RM is a key quantitative signature of this accretion flow. The time variability of RM can be used to quantitatively measure the nature of the accretion flow, and to differentiate models. Sensitive measurements of RM can be achieved using RM synthesis or using pulsars. Our energy conserving ideal magnetohydrodynamical simulations, which achieve high dynamical range by means of a deformed-mesh algorithm, stretch from several Bondi radii to about one-thousandth of that radius, and continue for tens of Bondi times. Magnetized flows which lack outward convection possess density slopes around −1, almost independent of physical parameters, and are more consistent with observational constraints than are strongly convective flows. We observe no tendency for the flows to become rotationally supported in their centres, or to develop steady outflow. We support these conclusions with formulae which encapsulate our findings in terms of physical and numerical parameters. We discuss the relation of these solutions to other approaches. The main potential uncertainties are the validity of ideal magnetohydrodynamic and the absence of a fully relativistic inner boundary condition. The RM variability predictions are testable with current and future telescope
The Sunyaev Zel'dovich effect: simulation and observation
The Sunyaev Zel'dovich effect (SZ effect) is a complete probe of ionized
baryons, the majority of which are likely hiding in the intergalactic medium.
We ran a CDM simulation using a moving mesh hydro code to
compute the statistics of the thermal and kinetic SZ effect such as the power
spectra and measures of non-Gaussianity. The thermal SZ power spectrum has a
very broad peak at multipole with temperature fluctuations
K. The power spectrum is consistent with available
observations and suggests a high and a possible role of
non-gravitational heating. The non-Gaussianity is significant and increases the
cosmic variance of the power spectrum by a factor of for .
We explore optimal driftscan survey strategies for the AMIBA CMB
interferometer and their dependence on cosmology. For SZ power spectrum
estimation, we find that the optimal sky coverage for a 1000 hours of
integration time is several hundred square degrees. One achieves an accuracy
better than 40% in the SZ measurement of power spectrum and an accuracy better
than 20% in the cross correlation with Sloan galaxies for . For
cluster searches, the optimal scan rate is around 280 hours per square degree
with a cluster detection rate 1 every 7 hours, allowing for a false positive
rate of 20% and better than 30% accuracy in the cluster SZ distribution
function measurement.Comment: 34 pages, 20 figures. Submitted to ApJ. Simulation maps have been
replaced by high resolution images. For higher resolution color images,
please download from http://www.cita.utoronto.ca/~zhangpj/research/SZ/ We
corrected a bug in our analysis. the SZ power spectrum decreases 50% and y
parameter decrease 25
Polarization of the Microwave Background in Defect Models
We compute the polarization power spectra for global strings, monopoles,
textures and nontopological textures, and compare them to inflationary models.
We find that topological defect models predict a significant (1 microK)
contribution to magnetic type polarization on degree angular scales, which is
produced by the large vector component of the defect source. We also
investigate the effect of decoherence on polarization. It leads to a smoothing
of acoustic oscillations both in temperature and polarization power spectra and
strongly suppresses the cross-correlation between temperature and polarization
relative to inflationary models. Presence or absence of magnetic polarization
or cross-correlation would be a strong discriminator between the two theories
of structure formation and will be testable with the next generation of CMB
satellites.Comment: 4 pages, 3 figures, RevTeX fil
- …
