2,930 research outputs found
A new apparatus for determining the shrinkage limit of clay soils
A new apparatus for the determination of shrinkage limit is described. Two versions have been produced: a manually operated prototype ‘version1' followed by an automated version named SHRINKiT. Test results using the former for British and overseas clay soils are described and comparisons made with the British Standards preferred method. A further set of test results is described for SHRINKiT. However, it was not possible to compare these with the BS 1377 method owing to the introduction of a ban on the use of mercury in the British Geological Survey's geotechnical laboratories. The new method is set in the context of the huge cost of shrink/swell-related subsidence damage in Britain and the relative disuse of both BS 1377 methods for shrinkage limit, for reasons of safety. The shrinkage behaviour of different soils types and sample states is discussed, in addition to the advantages and disadvantages of the new method
Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities
We examine in detail the relative equilibria in the four-vortex problem where
two pairs of vortices have equal strength, that is, \Gamma_1 = \Gamma_2 = 1 and
\Gamma_3 = \Gamma_4 = m where m is a nonzero real parameter. One main result is
that for m > 0, the convex configurations all contain a line of symmetry,
forming a rhombus or an isosceles trapezoid. The rhombus solutions exist for
all m but the isosceles trapezoid case exists only when m is positive. In fact,
there exist asymmetric convex configurations when m < 0. In contrast to the
Newtonian four-body problem with two equal pairs of masses, where the symmetry
of all convex central configurations is unproven, the equations in the vortex
case are easier to handle, allowing for a complete classification of all
solutions. Precise counts on the number and type of solutions (equivalence
classes) for different values of m, as well as a description of some of the
bifurcations that occur, are provided. Our techniques involve a combination of
analysis and modern and computational algebraic geometry
The frequency of transforming growth factor-TGF-B gene polymorphisms in a normal southern Iranian population
Several single nucleotide polymorphisms (SNPs) of the transforming growth factor-β1 gene (TGFB1) have been reported. Determination of TGFB1 SNPs allele frequencies in different ethnic groups is useful for both population genetic analyses and association studies with immunological diseases. In this study, five SNPs of TGFB1 were determined in 325 individuals from a normal southern Iranian population using polymerase chain reaction-restriction fragment length polymorphism method. This population was in Hardy-Weinberg equilibrium for these SNPs. Of the 12 constructed haplotypes, GTCGC and GCTGC were the most frequent in the normal southern Iranian population. Comparison of genotype and allele frequencies of TGFB SNPs between Iranian and other populations (meta-analysis) showed significant differences, and in this case the southern Iranian population seems genetically similar to Caucasoid populations. However, neighbour-joining tree using Nei's genetic distances based on TGF-β1 allele frequencies showed that southern Iranians are genetically far from people from the USA, Germany, UK, Denmark and the Czech Republic. In conclusion, this is the first report of the distribution of TGFB1 SNPs in an Iranian population and the results of this investigation may provide useful information for both population genetic and disease studies. © 2008 The Authors
Meridional Circulation and Global Solar Oscillations
We investigate the influence of large-scale meridional circulation on solar
p-modes by quasi-degenerate perturbation theory, as proposed by
\cite{lavely92}. As an input flow we use various models of stationary
meridional circulation obeying the continuity equation. This flow perturbs the
eigenmodes of an equilibrium model of the Sun. We derive the signatures of the
meridional circulation in the frequency multiplets of solar p-modes. In most
cases the meridional circulation leads to negative average frequency shifts of
the multiplets. Further possible observable effects are briefly discussed.Comment: 14 pages, 5 figures, submittted to Solar Physics Topical Issue
"HELAS
Towards a Simple Model of Compressible Alfvenic Turbulence
A simple model collisionless, dissipative, compressible MHD (Alfvenic)
turbulence in a magnetized system is investigated. In contrast to more familiar
paradigms of turbulence, dissipation arises from Landau damping, enters via
nonlinearity, and is distributed over all scales. The theory predicts that two
different regimes or phases of turbulence are possible, depending on the ratio
of steepening to damping coefficient (m_1/m_2). For strong damping
(|m_1/m_2|<1), a regime of smooth, hydrodynamic turbulence is predicted. For
|m_1/m_2|>1, steady state turbulence does not exist in the hydrodynamic limit.
Rather, spikey, small scale structure is predicted.Comment: 6 pages, one figure, REVTeX; this version to be published in PRE. For
related papers, see http://sdphpd.ucsd.edu/~medvedev/papers.htm
Domain Wall Resistance in Perpendicular (Ga,Mn)As: dependence on pinning
We have investigated the domain wall resistance for two types of domain walls
in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive
intrinsic DWR is inferred for domain walls that are pinned at an etching step,
which is quite consistent with earlier observations. However, much lower
intrinsic domain wall resistance is obtained when domain walls are formed by
pinning lines in unetched material. This indicates that the spin transport
across a domain wall is strongly influenced by the nature of the pinning.Comment: 9 pages, 3 figure
The Enthusiast’s Eye: The Value of Unsanctioned Knowledge in Design Historical Scholarship
If design history research relies solely on institutionalized documentation and academic scholarship – that is, sanctioned knowledge – not only will its purview be limited to a very narrow segment of design culture, it will also lose out on a vast array of sources to valuable knowledge about our material environment produced by amateurs, collectors, and enthusiasts – what we in this article define as “unsanctioned knowledge.” Because of its dissociation with professional institutions and academic protocols and their – albeit admittedly utopian, but nonetheless upheld – ideals of objectivity, this type of knowledge is typically considered fundamentally subjective in nature and therefore of little or no relevance and value to academic scholarship. In this article, we argue that, to the contrary, design historical scholarship has much to gain from engaging more seriously with the unsanctioned knowledge represented by the enthusiast's eye
A New Recursion Relation for the 6j-Symbol
The 6j-symbol is a fundamental object from the re-coupling theory of SU(2)
representations. In the limit of large angular momenta, its asymptotics is
known to be described by the geometry of a tetrahedron with quantized lengths.
This article presents a new recursion formula for the square of the 6j-symbol.
In the asymptotic regime, the new recursion is shown to characterize the
closure of the relevant tetrahedron. Since the 6j-symbol is the basic building
block of the Ponzano-Regge model for pure three-dimensional quantum gravity, we
also discuss how to generalize the method to derive more general recursion
relations on the full amplitudes.Comment: 10 pages, v2: title and introduction changed, paper re-structured;
Annales Henri Poincare (2011
Exact Occupation Time Distribution in a Non-Markovian Sequence and Its Relation to Spin Glass Models
We compute exactly the distribution of the occupation time in a discrete {\em
non-Markovian} toy sequence which appears in various physical contexts such as
the diffusion processes and Ising spin glass chains. The non-Markovian property
makes the results nontrivial even for this toy sequence. The distribution is
shown to have non-Gaussian tails characterized by a nontrivial large deviation
function which is computed explicitly. An exact mapping of this sequence to an
Ising spin glass chain via a gauge transformation raises an interesting new
question for a generic finite sized spin glass model: at a given temperature,
what is the distribution (over disorder) of the thermally averaged number of
spins that are aligned to their local fields? We show that this distribution
remains nontrivial even at infinite temperature and can be computed explicitly
in few cases such as in the Sherrington-Kirkpatrick model with Gaussian
disorder.Comment: 10 pages Revtex (two-column), 1 eps figure (included
Guiding the Way to Gamma-Ray Sources: X-ray Studies of Supernova Remnants
Supernova remnants have long been suggested as a class of potential
counterparts to unidentified gamma-ray sources. The mechanisms by which such
gamma-rays can arise may include emission from a pulsar associated with a
remnant, or a variety of processes associated with energetic particles
accelerated by the SNR shock. Imaging and spectral observations in the X-ray
band can be used to identify properties of the remnants that lead to gamma-ray
emission, including the presence of pulsar-driven nebulae, nonthermal X-ray
emission from the SNR shells, and the interaction of SNRs with dense
surrounding material.Comment: 16 pages, 11 figures, To appear in the proceedings of the workshop:
"The Nature of the Unidentified Galactic Gamma-Ray Sources" held at INAOE,
Mexico, October 2000, (A.Carraminana, O. Reiner and D. Thompson, eds.
- …
