47 research outputs found

    Identification of New SRF Binding Sites in Genes Modulated by SRF Over-Expression in Mouse Hearts

    Get PDF
    Background To identify in vivo new cardiac binding sites of serum response factor (SRF) in genes and to study the response of these genes to mild over-expression of SRF, we employed a cardiac-specific, transgenic mouse model, with mild over-expression of SRF (Mild-O SRF Tg). Methodology Microarray experiments were performed on hearts of Mild-O-SRF Tg at 6 months of age. We identified 207 genes that are important for cardiac function that were differentially expressed in vivo. Among them the promoter region of 192 genes had SRF binding motifs, the classic CArG or CArG-like (CArG-L) elements. Fifty-one of the 56 genes with classic SRF binding sites had not been previously reported. These SRF-modulated genes were grouped into 12 categories based on their function. It was observed that genes associated with cardiac energy metabolism shifted toward that of carbohydrate metabolism and away from that of fatty acid metabolism. The expression of genes that are involved in transcription and ion regulation were decreased, but expression of cytoskeletal genes was significantly increased. Using public databases of mouse models of hemodynamic stress (GEO database), we also found that similar altered expression of the SRF-modulated genes occurred in these hearts with cardiac ischemia or aortic constriction as well. Conclusion and significance SRF-modulated genes are actively regulated under various physiological and pathological conditions. We have discovered that a large number of cardiac genes have classic SRF binding sites and were significantly modulated in the Mild-O-SRF Tg mouse hearts. Hence, the mild elevation of SRF protein in the heart that is observed during typical adult aging may have a major impact on many SRF-modulated genes, thereby affecting Cardiac structure and performance. The results from our study could help to enhance our understanding of SRF regulation of cellular processes in the aged heart

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p < 5 × 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes

    Genomic Instability on hMSH2, hMLH1, CD48 and IRF4 Loci in Pulmonary Sarcoidosis

    Full text link
    Pulmonary sarcoidosis shares certain features with immune disease and neoplasia, and microsatellite DNA alterations are detectable in sputum specimens of pulmonary sarcoidosis patients. The biological basis and significance of these findings remain obscure, while information regarding the genetic basis of the disease is limited. Using multiplex PCR-based microsatellite analysis, we investigated 40 markers located on 1p, 1q, 2p, 2q, 3p, 5q, 6p, 7p, 9p, 11q, 14q and 17p in 38 sputum specimens of pulmonary sarcoidosis patients. Loss of heterozygosity (LOH) was found in 13 of 38 (34.2%) patients in at least one locus. These alterations occurred in the subset of markers located in or close to DNA mismatch repair (MMR) genes, hMSH2 (2p22.3–p16.1) and hMLH1 (3p21.32–p21.1), as well as in CD48 (1q21–q23) and IRF4 (6p23–p25), genes associated with lymphocyte activation. Microsatellite instability (MIN) was observed in five cases (13.2%) in at least one locus. Our data suggest that genomic instability in pulmonary sarcoidosis could be due to MMR defects, while alterations of lymphocyte-specific agents could account for granuloma formation.</jats:p

    Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions

    No full text
    Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (. CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds. © 2015 Elsevier B.V

    Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation

    No full text
    Muscle Lim Protein (MLP) is a protein with multiple functional roles in striated muscle physiology and pathophysiology. Herein, we demonstrate that MLP directly binds to slow, fast, and cardiac myosin-binding protein C (MyBP-C) during myogenesis, as shown by yeast two-hybrid and a range of protein-protein interaction assays. The minimal interacting domains involve MLP inter-LIM and MyBP-C [C4]. The interaction is sensitive to cytosolic Ca2 + concentrations changes and to MyBP-C phosphorylation by PKA or CaMKII. Confocal microscopy of differentiating myoblasts showed MLP and MyBP-C colocalization during myoblast differentiation. Suppression of the complex formation with recombinant MyBP-C [C4] peptide overexpression, inhibited myoblast differentiation by 65%. Suppression of both MLP and MyBP-C expression in myoblasts by siRNA revealed negative synergistic effects on differentiation. The MLP/MyBP-C complex modulates the actin activated myosin II ATPase activity in vitro, which could interfere with sarcomerogenesis and myofilaments assembly during differentiation. Our data demonstrate a critical role of the MLP/MyBP-C complex during early myoblast differentiation. Its absence in muscles with mutations or aberrant expression of MLP or MyBP-C could be directly implicated in the development of cardiac and skeletal myopathies. © 2017 Elsevier B.V

    Array-based pharmacogenomics of molecular-targeted therapies in oncology

    No full text
    The advent of microarrays over the past decade has transformed the way genome-wide studies are designed and conducted, leading to an unprecedented speed of acquisition and amount of new knowledge. Microarray data have led to the identification of molecular subclasses of solid tumors characterized by distinct oncogenic pathways, as well as the development of multigene prognostic or predictive models equivalent or superior to those of established clinical parameters. In the field of molecular-targeted therapy for cancer, in particular, the application of array-based methodologies has enabled the identification of molecular targets with &apos;key&apos; roles in neoplastic transformation or tumor progression and the subsequent development of targeted agents, which are most likely to be active in the specific molecular setting. Herein, we present a summary of the main applications of whole-genome expression microarrays in the field of molecular-targeted therapies for solid tumors and we discuss their potential in the clinical setting. An emphasis is given on deciphering the molecular mechanisms of drug action, identifying novel therapeutic targets and suitable agents to target them with, and discovering molecular markers/signatures that predict response to therapy or optimal drug dose for each patient

    Identification of a protein phosphatase-1/phospholamban complex that is regulated by cAMP-dependent phosphorylation

    No full text
    In human and experimental heart failure, the activity of the type 1 phosphatase is significantly increased, associated with dephosphorylation of phospholamban, inhibition of the sarco(endo)plasmic reticulum Ca2+ transport ATPase (SERCA2a) and depressed function. In the current study, we investigated the molecular mechanisms controlling protein phosphatase-1 activity. Using recombinant proteins and complementary in vitro binding studies, we identified a multi-protein complex centered on protein phosphatase-1 that includes its muscle specific glycogen-targeting subunit GM and substrate phospholamban. GM interacts directly with phospholamban and this association is mediated by the cytosolic regions of the proteins. Our findings suggest the involvement of GM in mediating formation of the phosphatase-1/GM/phospholamban complex through the direct and independent interactions of GM with both protein phosphatase-1 and phospholamban. Importantly, the protein phosphatase-1/GM/ phospholamban complex dissociates upon protein kinase A phosphorylation, indicating its significance in the β-adrenergic signalling axis. Moreover, protein phosphatase-1 activity is regulated by two binding partners, inhibitor-1 and the small heat shock protein 20, Hsp20. Indeed, human genetic variants of inhibitor-1 (G147D) or Hsp20 (P20L) result in reduced binding and inhibition of protein phosphatase-1, suggesting aberrant enzymatic regulation in human carriers. These findings provide insights into the mechanisms underlying fine-tuned regulation of protein phosphatase-1 and its impact on the SERCA2/phospholamban interactome in cardiac function

    Pharmacogenetically tailored treatments for heart disease

    No full text
    Heart disease represents the primary cause of death worldwide, with mortality rates being predicted to remain constant within the next couple of decades. Cardiac disease treatment currently includes the administration of drugs, predominantly aiming at improving heart performance, through controlling heart rhythm, blood pressure, as well as reducing cholesterol and blood clotting. Despite, however, the medical advances that have led towards a better understanding of heart disease pathophysiology and the development of new therapeutic approaches, the degree of success of the available drug therapies varies among patients. Polymorphisms in a number of genes have been shown to result in differences in pharmacokinetics, pharmacodynamics and drug metabolism and have therefore been associated with response to drug treatment. The occurrence of adverse drug reactions represents another factor influencing the outcome of therapeutic treatments. While the influence of genetic polymorphisms in patient&apos;s response to heart disease drugs is being unveiled, the rapidly evolving field of pharmacogenetics is promising to aid clinicians in choosing the best suited drug/dose for each patient and the pharmaceutical companies in the design of better targeted, more effective new chemical compounds. In the near future individualized, targeted therapy will become part of clinical care routine maximizing patient therapeutic benefits and minimizing risks of adverse effects. © 2010 Bentham Science Publishers Ltd

    Histidine-rich calcium binding protein: The new regulator of sarcoplasmic reticulum calcium cycling

    No full text
    The histidine-rich calcium binding protein (HRC) is a novel regulator of sarcoplasmic reticulum (SR) Ca2+-uptake, storage and release. Residing in the SR lumen, HRC binds Ca2+ with high capacity but low affinity. In vitro phosphorylation of HRC affects ryanodine affinity of the ryanodine receptor (RyR), suggesting a functional role of HRC on SR Ca2+-release. Indeed, acute HRC overexpression in isolated rodent cardiomyocytes decreases Ca2+-induced Ca2+-release, increases SR Ca2+-load, and impairs contractility. The HRC effects on RyR may be regulated by the Ca2+-sensitivity of its interaction with triadin. However, HRC also affects the SR Ca2+-ATPase, as shown by HRC overexpression in transgenic mouse hearts, which resulted in reduced SR Ca2+-uptake rates, cardiac remodeling and hypertrophy. In fact, in vitro generated evidence suggests that HRC directly interacts with SR Ca2+-ATPase2, supporting a dual role of HRC in Ca2+-homeostasis: regulation of both SR Ca2+-uptake and Ca2+-release. Furthermore, HRC plays an important role in myocyte differentiation and in antiapoptotic cardioprotection against ischemia/reperfusion induced cardiac injury. Interestingly, HRC has been linked with familiar cardiac conduction disease and an HRC polymorphism was shown to associate with malignant ventricular arrhythmias in the background of idiopathic dilated cardiomyopathy. This review summarizes studies, which have established the critical role of HRC in Ca2+-homeostasis, suggesting its importance in cardiac physiology and pathophysiology. © 2010 Elsevier Ltd
    corecore