929 research outputs found
A critique of avian CHD-based molecular sexing protocols illustrated by a Z-chromosome polymorphism detected in auklets
The sexes of non-ratite birds can be determined routinely by PCR amplification of the CHD-Z and CHD-W genes.
CHD -based molecular sexing of four species of auklets revealed the presence of a polymorphism in the Z chromosome. No deviation from a 1:1 sex ratio was observed among the chicks, though the analyses were of limited power. Polymorphism in the CHD-Z
gene has not been reported previously in any bird, but if undetected it could lead to the incorrect assignment of sex. We discuss the potential difficulties caused by a
polymorphism such as that identified in auklets and the merits of alternative CHD -based sexing protocols and primers
30 Doradus - a Template for "Real Starbursts"?
30 Doradus is the closest massive star forming region and the best studied
template of a starburst. In this conference paper we first summarize the
properties of 30 Doradus and its stellar core, R136. We discuss the effects of
insufficient spatial resolution and cluster density profiles on dynamical mass
estimates of super star clusters, and show that their masses can be easily
overestimated by a factor of ten or more. From a very simple model, with
R136-like clusters as representative building blocks, we estimate typical
luminosities of the order 10^11 L_o for starburst galaxies.Comment: To be published in "Starbursts: From 30 Doradus to Lyman Break
Galaxies", eds. R. de Grijs & R.M. Gonzalez Delgad
Outskirts of Nearby Disk Galaxies: Star Formation and Stellar Populations
The properties and star formation processes in the far-outer disks of nearby
spiral and dwarf irregular galaxies are reviewed. The origin and structure of
the generally exponential profiles in stellar disks is considered to result
from cosmological infall combined with a non-linear star formation law and a
history of stellar migration and scattering from spirals, bars, and random
collisions with interstellar clouds. In both spirals and dwarfs, the far-outer
disks tend to be older, redder and thicker than the inner disks, with the
overall radial profiles suggesting inside-out star formation plus stellar
scattering in spirals, and outside-in star formation with a possible
contribution from scattering in dwarfs. Dwarf irregulars and the far-outer
parts of spirals both tend to be gas dominated, and the gas radial profile is
often non-exponential although still decreasing with radius. The ratio of
H-alpha to far-UV flux tends to decrease with lower surface brightness in these
regions, suggesting either a change in the initial stellar mass function or the
sampling of that function, or a possible loss of H-alpha photons.Comment: 20 pages, 8 figures, Invited review, Book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
II Zwicky 23 and Family
II Zwicky 23 (UGC 3179) is a luminous, nearby compact narrow emission line
starburst galaxy with blue optical colors and strong emission lines. We present
a photometric and morphological study of II Zw 23 and its interacting
companions using data obtained with the WIYN 3.5-m telescope in Kitt Peak,
Arizona. II Zwicky 23 has a highly disturbed outer structure with long trails
of debris that may be feeding tidal dwarfs. Its central regions appear disky, a
structure that is consistent with the overall rotation pattern observed in the
H-alpha velocity field measured from Densepak observations obtained with WIYN.
We discuss the structure of II Zwicky 23 and its set of companions and possible
scenarios of debris formation in this system.Comment: 5 pages, 2 figures. To appear in the proceedings of ESO Astrophysics
Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V.
Ivanov, J. Burissova (Springer
The Maximum Mass of Star Clusters
When an universal untruncated star cluster initial mass function (CIMF)
described by a power-law distribution is assumed, the mass of the most massive
star cluster in a galaxy (M_max) is the result of the size-of-sample (SoS)
effect. This implies a dependence of M_max on the total number of star clusters
(N). The SoS effect also implies that M_max within a cluster population
increases with equal logarithmic intervals of age. This is because the number
of clusters formed in logarithmic age intervals increases (assuming a constant
cluster formation rate). This effect has been observed in the SMC and LMC.
Based on the maximum pressure (P_int) inside molecular clouds, it has been
suggested that a physical maximum mass (M_max[phys]) should exist. The theory
predicts that M_max[phys] should be observable, i.e. lower than M_max that
follows from statistical arguments, in big galaxies with a high star formation
rate. We compare the SoS relations in the SMC and LMC with the ones in M51 and
model the integrated cluster luminosity function (CLF) for two cases: 1) M_max
is determined by the SoS effect and 2) M_max=M_max[phys]=constant. The observed
CLF of M51 and the comparison of the SoS relations with the SMC and LMC both
suggest that there exists a M_max[phys] of 5*10^5 M_sun in M51. The CLF of M51
looks very similar to the one observed in the ``Antennae'' galaxies. A direct
comparison with our model suggests that there M_max[phys]=2*10^6 M_sun.Comment: 4 pages, contribution to "Globular Clusters: Guides to Galaxies",
March 6th-10th, 200
The young star cluster system of the Antennae galaxies
“The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0103-xThe study of young star cluster (YSC) systems, preferentially in starburst and merging galaxies, has seen great interest in the recent past, as it provides important input to models of star formation. However, even some basic properties (such as the luminosity function; LF) of YSC systems are still being debated. Here, we study the photometric properties of the YSC system in the nearest major merger system, the Antennae galaxies. We find evidence for the existence of a statistically significant turnover in the LF.Peer reviewe
The starburst phenomenon from the optical/near-IR perspective
The optical/near-IR stellar continuum carries unique information about the
stellar population in a galaxy, its mass function and star-formation history.
Star-forming regions display rich emission-line spectra from which we can
derive the dust and gas distribution, map velocity fields, metallicities and
young massive stars and locate shocks and stellar winds. All this information
is very useful in the dissection of the starburst phenomenon. We discuss a few
of the advantages and limitations of observations in the optical/near-IR region
and focus on some results. Special attention is given to the role of
interactions and mergers and observations of the relatively dust-free starburst
dwarfs. In the future we expect new and refined diagnostic tools to provide us
with more detailed information about the IMF, strength and duration of the
burst and its triggering mechanisms.Comment: 6 pages, 3 figures, to appear in "Starbursts: from 30 Doradus to
Lyman Break Galaxies" 2005, eds. R. de Grijs and R. M. Gonzalez Delgado
(Kluwer
Efficiency of the dynamical mechanism
The most extreme starbursts occur in galaxy mergers, and it is now
acknowledged that dynamical triggering has a primary importance in star
formation. This triggering is due partly to the enhanced velocity dispersion
provided by gravitational instabilities, such as density waves and bars, but
mainly to the radial gas flows they drive, allowing large amounts of gas to
condense towards nuclear regions in a small time scale. Numerical simulations
with several gas phases, taking into account the feedback to regulate star
formation, have explored the various processes, using recipes like the Schmidt
law, moderated by the gas instability criterion. May be the most fundamental
parameter in starbursts is the availability of gas: this sheds light on the
amount of external gas accretion in galaxy evolution. The detailed mechanisms
governing gas infall in the inner parts of galaxy disks are discussed.Comment: 6 pages, 3 figures, to be published in "Starbursts - From 30 Doradus
to Lyman break galaxies", ed. R. de Grijs and R. Gonzalez-Delgad
Decision Problems for Nash Equilibria in Stochastic Games
We analyse the computational complexity of finding Nash equilibria in
stochastic multiplayer games with -regular objectives. While the
existence of an equilibrium whose payoff falls into a certain interval may be
undecidable, we single out several decidable restrictions of the problem.
First, restricting the search space to stationary, or pure stationary,
equilibria results in problems that are typically contained in PSPACE and NP,
respectively. Second, we show that the existence of an equilibrium with a
binary payoff (i.e. an equilibrium where each player either wins or loses with
probability 1) is decidable. We also establish that the existence of a Nash
equilibrium with a certain binary payoff entails the existence of an
equilibrium with the same payoff in pure, finite-state strategies.Comment: 22 pages, revised versio
Can forest management based on natural disturbances maintain ecological resilience?
Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
- …
