366 research outputs found
Big bounce from spin and torsion
The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general
relativity to account for the intrinsic spin of matter. Spacetime torsion,
generated by spin of Dirac fields, induces gravitational repulsion in fermionic
matter at extremely high densities and prevents the formation of singularities.
Accordingly, the big bang is replaced by a bounce that occurred when the energy
density was on the order of (in
natural units), where is the fermion number density and is
the number of thermal degrees of freedom. If the early Universe contained only
the known standard-model particles (), then the energy density at
the big bounce was about 15 times larger than the Planck energy. The minimum
scale factor of the Universe (at the bounce) was about times smaller
than its present value, giving \approx 50 \mum. If more fermions existed in
the early Universe, then the spin-torsion coupling causes a bounce at a lower
energy and larger scale factor. Recent observations of high-energy photons from
gamma-ray bursts indicate that spacetime may behave classically even at scales
below the Planck length, supporting the classical spin-torsion mechanism of the
big bounce. Such a classical bounce prevents the matter in the contracting
Universe from reaching the conditions at which a quantum bounce could possibly
occur.Comment: 6 pages; published versio
The Milky Way Bulge: Observed properties and a comparison to external galaxies
The Milky Way bulge offers a unique opportunity to investigate in detail the
role that different processes such as dynamical instabilities, hierarchical
merging, and dissipational collapse may have played in the history of the
Galaxy formation and evolution based on its resolved stellar population
properties. Large observation programmes and surveys of the bulge are providing
for the first time a look into the global view of the Milky Way bulge that can
be compared with the bulges of other galaxies, and be used as a template for
detailed comparison with models. The Milky Way has been shown to have a
box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an
additional spheroidal component. In this review we summarise the global
chemical abundances, kinematics and structural properties that allow us to
disentangle these multiple components and provide constraints to understand
their origin. The investigation of both detailed and global properties of the
bulge now provide us with the opportunity to characterise the bulge as observed
in models, and to place the mixed component bulge scenario in the general
context of external galaxies. When writing this review, we considered the
perspectives of researchers working with the Milky Way and researchers working
with external galaxies. It is an attempt to approach both communities for a
fruitful exchange of ideas.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen
E., Peletier R., Gadotti D., Springer Publishing. 36 pages, 10 figure
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
ThermoElectric Transport Properties of a Chain of Quantum Dots with Self-Consistent Reservoirs
We introduce a model for charge and heat transport based on the
Landauer-Buttiker scattering approach. The system consists of a chain of
quantum dots, each of them being coupled to a particle reservoir. Additionally,
the left and right ends of the chain are coupled to two particle reservoirs.
All these reservoirs are independent and can be described by any of the
standard physical distributions: Maxwell-Boltzmann, Fermi-Dirac and
Bose-Einstein. In the linear response regime, and under some assumptions, we
first describe the general transport properties of the system. Then we impose
the self-consistency condition, i.e. we fix the boundary values (T_L,\mu_L) and
(T_R,mu_R), and adjust the parameters (T_i,mu_i), for i = 1,...,N, so that the
net average electric and heat currents into all the intermediate reservoirs
vanish. This condition leads to expressions for the temperature and chemical
potential profiles along the system, which turn out to be independent of the
distribution describing the reservoirs. We also determine the average electric
and heat currents flowing through the system and present some numerical
results, using random matrix theory, showing that these currents are typically
governed by Ohm and Fourier laws.Comment: Minor changes (45 pages
b-Jet Identification in the D0 Experiment
Algorithms distinguishing jets originating from b quarks from other jet
flavors are important tools in the physics program of the D0 experiment at the
Fermilab Tevatron p-pbar collider. This article describes the methods that have
been used to identify b-quark jets, exploiting in particular the long lifetimes
of b-flavored hadrons, and the calibration of the performance of these
algorithms based on collider data.Comment: submitted to Nuclear Instruments and Methods in Physics Research
Search for pair production of the scalar top quark in the electron-muon final state
We report the result of a search for the pair production of the lightest
supersymmetric partner of the top quark () in
collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron
collider corresponding to an integrated luminosity of 5.4 fb. The scalar
top quarks are assumed to decay into a quark, a charged lepton, and a
scalar neutrino (), and the search is performed in the electron
plus muon final state. No significant excess of events above the standard model
prediction is detected, and improved exclusion limits at the 95% C.L. are set
in the the (,) mass plane
Search for the standard model Higgs boson in tau final states
We present a search for the standard model Higgs boson using hadronically
decaying tau leptons, in 1 inverse femtobarn of data collected with the D0
detector at the Fermilab Tevatron ppbar collider. We select two final states:
tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These
final states are sensitive to a combination of associated W/Z boson plus Higgs
boson, vector boson fusion and gluon-gluon fusion production processes. The
observed ratio of the combined limit on the Higgs production cross section at
the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of
115 GeV.Comment: publication versio
Search for scalar bottom quarks and third-generation leptoquarks in ppbar collisions at sqrt(s) = 1.96 TeV
We report the results of a search for pair production of scalar bottom quarks
(sbottom) and scalar third-generation leptoquarks in 5.2 fb-1 of ppbar
collisions at the D0 experiment of the Fermilab Tevatron Collider. Scalar
bottom quarks are assumed to decay to a neutralino and a quark, and we set
95% C.L. lower limits on their production in the (m_sbottom, m_neutralino) mass
plane such as m_sbottom>247 GeV for m_neutralino=0 and m_neutralino>110 GeV for
160<m_sbottom<200 GeV. The leptoquarks are assumed to decay to a tau neutrino
and a quark, and we set a 95% C.L. lower limit of 247 GeV on the mass of a
charge-1/3 third-generation scalar leptoquark.Comment: Published by Phys. Lett.
Search for W' bosons decaying to an electron and a neutrino with the D0 detector
This Letter describes the search for a new heavy charged gauge boson W'
decaying into an electron and a neutrino. The data were collected with the D0
detector at the Fermilab Tevatron proton-antiproton Collider at a
center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity
of about 1 inverse femtobarn. Lacking any significant excess in the data in
comparison with known processes, an upper limit is set on the production cross
section times branching fraction, and a W' boson with mass below 1.00 TeV can
be excluded at the 95% C.L., assuming standard-model-like couplings to
fermions. This result significantly improves upon previous limits, and is the
most stringent to date.Comment: submitted to Phys. Rev. Let
Search for the associated production of a b quark and a neutral supersymmetric Higgs boson which decays to tau pairs
We report results from a search for production of a neutral Higgs boson in
association with a quark. We search for Higgs decays to pairs with
one subsequently decaying to a muon and the other to hadrons. The data
correspond to 2.7fb of \ppbar collisions recorded by the D0 detector
at TeV. The data are found to be consistent with background
predictions. The result allows us to exclude a significant region of parameter
space of the minimal supersymmetric model.Comment: Submitted to Phys. Rev. Letter
- …
