1,856 research outputs found
A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool
An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation
Quantum Walks driven by many coins
Quantum random walks have been much studied recently, largely due to their
highly nonclassical behavior. In this paper, we study one possible route to
classical behavior for the discrete quantum random walk on the line: the use of
multiple quantum ``coins'' in order to diminish the effects of interference
between paths. We find solutions to this system in terms of the single coin
random walk, and compare the asymptotic limit of these solutions to numerical
simulations. We find exact analytical expressions for the time-dependence of
the first two moments, and show that in the long time limit the ``quantum
mechanical'' behavior of the one-coin walk persists. We further show that this
is generic for a very broad class of possible walks, and that this behavior
disappears only in the limit of a new coin for every step of the walk.Comment: 36 pages RevTeX 4.0 + 5 figures (encapsulated Postscript). Submitted
to Physical Review
Fluence Dependence of Charge Collection of irradiated Pixel Sensors
The barrel region of the CMS pixel detector will be equipped with ``n-in-n''
type silicon sensors. They are processed on DOFZ material, use the moderated
p-spray technique and feature a bias grid. The latter leads to a small fraction
of the pixel area to be less sensitive to particles. In order to quantify this
inefficiency prototype pixel sensors irradiated to particle fluences between
and 2.6\times 10^{15} \Neq have been bump bonded to
un-irradiated readout chips and tested using high energy pions at the H2 beam
line of the CERN SPS. The readout chip allows a non zero suppressed analogue
readout and is therefore well suited to measure the charge collection
properties of the sensors.
In this paper we discuss the fluence dependence of the collected signal and
the particle detection efficiency. Further the position dependence of the
efficiency is investigated.Comment: 11 Pages, Presented at the 5th Int. Conf. on Radiation Effects on
Semiconductor Materials Detectors and Devices, October 10-13, 2004 in
Florence, Italy, v3: more typos corrected, minor changes required by the
refere
He Scattering from Compact Clusters and from Diffusion-Limited Aggregates on Surfaces: Observable Signatures of Structure
The angular intensity distribution of He beams scattered from compact
clusters and from diffusion limited aggregates, epitaxially grown on metal
surfaces, is investigated theoretically. The purpose is twofold: to distinguish
compact cluster structures from diffusion limited aggregates, and to find
observable {\em signatures} that can characterize the compact clusters at the
atomic level of detail. To simplify the collision dynamics, the study is
carried out in the framework of the sudden approximation, which assumes that
momentum changes perpendicular to the surface are large compared with momentum
transfer due to surface corrugation. The diffusion limited aggregates on which
the scattering calculations were done, were generated by kinetic Monte Carlo
simulations. It is demonstrated, by focusing on the example of compact Pt
Heptamers, that signatures of structure of compact clusters may indeed be
extracted from the scattering distribution. These signatures enable both an
experimental distinction between diffusion limited aggregates and compact
clusters, and a determination of the cluster structure. The characteristics
comprising the signatures are, to varying degrees, the Rainbow, Fraunhofer,
specular and constructive interference peaks, all seen in the intensity
distribution. It is also shown, how the distribution of adsorbate heights above
the metal surface can be obtained by an analysis of the specular peak
attenuation. The results contribute to establishing He scattering as a powerful
tool in the investigation of surface disorder and epitaxial growth on surfaces,
alongside with STM.Comment: 41 pages, 16 postscript figures. For more details see
http://www.fh.huji.ac.il/~dan
Efficiency of the dynamical mechanism
The most extreme starbursts occur in galaxy mergers, and it is now
acknowledged that dynamical triggering has a primary importance in star
formation. This triggering is due partly to the enhanced velocity dispersion
provided by gravitational instabilities, such as density waves and bars, but
mainly to the radial gas flows they drive, allowing large amounts of gas to
condense towards nuclear regions in a small time scale. Numerical simulations
with several gas phases, taking into account the feedback to regulate star
formation, have explored the various processes, using recipes like the Schmidt
law, moderated by the gas instability criterion. May be the most fundamental
parameter in starbursts is the availability of gas: this sheds light on the
amount of external gas accretion in galaxy evolution. The detailed mechanisms
governing gas infall in the inner parts of galaxy disks are discussed.Comment: 6 pages, 3 figures, to be published in "Starbursts - From 30 Doradus
to Lyman break galaxies", ed. R. de Grijs and R. Gonzalez-Delgad
Vanishing spin alignment : experimental indication of triaxial nuclear molecule
Fragment-fragment- coincidences have been measured for at an energy corresponding to the population of a conjectured
resonance in Ni. Fragment angular distributions as well as -ray
angular correlations indicate that the spin orientations of the outgoing
fragments are perpendicular to the orbital angular momentum. This differs from
the and the resonances, and
suggests two oblate nuclei interacting in an equator-to-equator
molecular configuration.Comment: 14 pages standard REVTeX file, 3 ps Figures -- Accepted for
publication in Physical Review C (Rapid Communication
The Pioneer anomaly and the holographic scenario
In this paper we discuss the recently obtained relation between the
Verlinde's holographic model and the first phenomenological Modified Newtonian
dynamics. This gives also a promising possible explanation to the Pioneer
anomaly.Comment: 5 pages, Accepted for publication in Astrophysics & Space Scienc
Bell-inequality violation with "thermal" radiation
The model of a quantum-optical device for a conditional preparation of
entangled states from input mixed states is presented. It is demonstrated that
even thermal or pseudo-thermal radiation can be entangled in such a way, that
Bell-inequalities are violated
Thermal conductivity via magnetic excitations in spin-chain materials
We discuss the recent progress and the current status of experimental
investigations of spin-mediated energy transport in spin-chain and spin-ladder
materials with antiferromagnetic coupling. We briefly outline the central
results of theoretical studies on the subject but focus mainly on recent
experimental results that were obtained on materials which may be regarded as
adequate physical realizations of the idealized theoretical model systems. Some
open questions and unsettled issues are also addressed.Comment: 17 pages, 4 figure
Branching Fractions for D0 -> K+K- and D0 -> pi+pi-, and a Search for CP Violation in D0 Decays
Using the large hadroproduced charm sample collected in experiment E791 at
Fermilab, we have measured ratios of branching fractions for the two-body
singly-Cabibbo-suppressed charged decays of the D0:
(D0 -> KK)/(D0 -> Kpi) = 0.109 +- 0.003 +- 0.003,
(D0 -> pipi)/(D0 -> Kpi) = 0.040 +- 0.002 +- 0.003, and
(D0 -> KK)/(D0 -> pipi) = 2.75 +- 0.15 +- 0.16. We have looked for
differences in the decay rates of D0 and D0bar to the CP eigenstates K+K- and
pi+pi-, and have measured the CP asymmetry parameters
A_CP(K+K-) = -0.010 +- 0.049 +- 0.012 and
A_CP(pi+pi-) = -0.049 +- 0.078 +- 0.030, both consistent with zero.Comment: 10 Postscript pages, including 2 figures. Submitted to Phys. Lett.
- …
